Skip to main content
Log in

Gold nanostar-modified electrochemical sensor for highly sensitive renin quantification as a marker of tissue-perfusion

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study proposes and demonstrates a novel electrochemical sensor for accurate quantification of renin levels in human samples. The carbon-based device modified with polyarginine-coated gold nanostars, exhibited enhanced stability and dispersion. Characterization techniques confirmed minimal alterations in the nanostructure morphology. Differential pulse voltammetry measurements on undiluted plasma samples demonstrated a highly linear current peak for renin levels with a low limit of detection. Bland–Altman analysis showed strong agreement with the gold standard enzyme-linked immunosorbent assay. The gold nanostars double layer improved sensor selectivity and sensitivity, offering a fast and cost-effective method for renin quantification under tissue perfusion conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. M.H. Jazayeri, H. Amani, A.A. Pourfatollah, H. Pazoki-Toroudi, B. Sedighimoghaddam, Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sensing Res. 9, 17–22 (2016). https://doi.org/10.1016/j.sbsr.2016.04.002

    Article  Google Scholar 

  2. J.R.G. Navarro et al., Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology 23(46), 465602 (2012). https://doi.org/10.1088/0957-4484/23/46/465602

    Article  CAS  Google Scholar 

  3. M.M. Phiri, D.W. Mulder, B.C. Vorster, Seedless gold nanostars with seed-like advantages for biosensing applications. R. Soc. Open Sci. 6(2), 181971 (2019). https://doi.org/10.1098/rsos.181971

    Article  CAS  Google Scholar 

  4. D.W. Mulder, M.M. Phiri, A. Jordaan, B.C. Vorster, Modified HEPES one-pot synthetic strategy for gold nanostars. R. Soc. Open Sci. 6(6), 190160 (2019). https://doi.org/10.1098/rsos.190160

    Article  CAS  Google Scholar 

  5. Y. Zhu et al., Decorating gold nanostars with multiwalled carbon nanotubes for photothermal therapy. R. Soc. Open Sci. 5(8), 180159 (2018). https://doi.org/10.1098/rsos.180159

    Article  CAS  Google Scholar 

  6. S.Z. Nergiz, N. Gandra, S. Tadepalli, S. Singamaneni, multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. ACS Appl. Mater. 6(18), 16395–16402 (2014). https://doi.org/10.1021/am504795d

    Article  CAS  Google Scholar 

  7. L.A. Al-Ani, M.A. AlSaadi, F.A. Kadir, N.M. Hashim, N.M. Julkapli, W.A. Yehye, Graphene– gold based nanocomposites applications in cancer diseases; efficient detection and therapeutic tools. Eur. J. Med. Chem. 139, 349–366 (2017). https://doi.org/10.1016/j.ejmech.2017.07.036

    Article  CAS  Google Scholar 

  8. M. Rahman, D. Cui, S. Zhou, A. Zhang, D. Chen, A graphene oxide coated gold nanostar based sensing platform for ultrasensitive electrochemical detection of circulating tumor DNA. Anal. Methods 12(4), 440–447 (2020). https://doi.org/10.1039/c9ay01620a

    Article  CAS  Google Scholar 

  9. A. Schuck, H.E. Kim, M. Kang, Y.-S. Kim, Rapid detection of inflammation-related biomarkers using an electrochemical sensor modified with a PBNC-AuNS-GO-based nanocomposite. ACS Appl. Electron. Mater. 4(10), 4831–4839 (2022). https://doi.org/10.1021/acsaelm.2c00701

    Article  CAS  Google Scholar 

  10. F. Senatore, P. Balakumar, G. Jagadeesh, Dysregulation of the renin-angiotensin system in septic shock: mechanistic insights and application of angiotensin II in clinical management. Pharmacol. Res. 174, 105916 (2021). https://doi.org/10.1016/j.phrs.2021.105916

    Article  CAS  Google Scholar 

  11. A.N.D. Cat, R.M. Touyz, Renin-angiotensin-aldosterone system: new concepts. Hypertension (2013). https://doi.org/10.2217/EBO.12.463

    Article  Google Scholar 

  12. L.M. Harrison-Bernard, The renal renin-angiotensin system. Adv. Physiol. Educ. 33(4), 270–274 (2009). https://doi.org/10.1152/advan.00049.2009

    Article  Google Scholar 

  13. P. Leśnik, L. Łysenko, M. Krzystek-Korpacka, E. Woźnica-Niesobska, M. Mierzchała-Pasierb, J. Janc, Renin as a marker of tissue perfusion, septic shock and mortality in septic patients: a prospective observational study. Int. J. Mol. Sci. 23(16), 9133 (2022). https://doi.org/10.3390/ijms23169133

    Article  CAS  Google Scholar 

  14. P.J. Gleeson et al., Renin as a marker of tissue-perfusion and prognosis in critically Ill patients*. Crit. Care Med. 47(2), 152–158 (2019). https://doi.org/10.1097/CCM.0000000000003544

    Article  CAS  Google Scholar 

  15. D. Hartman, G.A. Sagnella, C.A. Chesters, G.A. MacGregor, Direct renin assay and plasma renin activity assay compared. Clin. Chem. 50(11), 2159–2161 (2004). https://doi.org/10.1373/clinchem.2004.033654

    Article  CAS  Google Scholar 

  16. M. Kukwikila, S. Howorka, Nanopore-based electrical and label-free sensing of enzyme activity in blood serum. Anal. Chem. 87(18), 9149–9154 (2015). https://doi.org/10.1021/acs.analchem.5b01764

    Article  CAS  Google Scholar 

  17. A. Hirano, T. Tanaka, H. Kataura, T. Kameda, Arginine side chains as a dispersant for individual single-wall carbon nanotubes. Chem. - A Eur. J. 20(17), 4922–4930 (2014). https://doi.org/10.1002/chem.201400003

    Article  CAS  Google Scholar 

  18. H. Kaya, O. Bulut, A.R. Kamali, D. Ege, l-Arginine modified multi-walled carbon nanotube/sulfonated poly(ether ether ketone) nanocomposite films for biomedical applications. Appl. Surf. Sci. 444, 168–176 (2018). https://doi.org/10.1016/j.apsusc.2018.03.046

    Article  CAS  Google Scholar 

  19. C. Muller et al., Polyarginine decorated polydopamine nanoparticles with antimicrobial properties for functionalization of hydrogels. Front. Bioeng. Biotechnol. 8, 1–14 (2020). https://doi.org/10.3389/fbioe.2020.00982

    Article  Google Scholar 

  20. G. Aydoğdu Tığ, Gold nanoparticle and poly(arginine) modified GCE for simultaneous determination of hydroquinone and catechol. Hacettepe J. Biol. Chem. 3(45), 443–451 (2017). https://doi.org/10.15671/HJBC.2017.166

    Article  Google Scholar 

  21. A. Schuck, H.E. Kim, M. Kang, Y. Kim, Comparison and analysis of polymer-functionalized carbon nanotubes for enhancement of the quantitative detection of procalcitonin levels in human plasma. BioChip J. 17, 274–283 (2023). https://doi.org/10.1007/s13206-023-00102-6

    Article  CAS  Google Scholar 

  22. B. Ghiadi, M. Baniadam, M. Maghrebi, A. Amiri, Rapid, one-pot synthesis of highly-soluble carbon nanotubes functionalized by L-arginine. Russ. J. Phys. Chem. A 87(4), 649–653 (2013). https://doi.org/10.1134/S003602441304033X

    Article  CAS  Google Scholar 

  23. J. Polte et al., Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132(4), 1296–1301 (2010). https://doi.org/10.1021/ja906506j

    Article  CAS  Google Scholar 

  24. S. Atta, M. Beetz, L. Fabris, Understanding the role of AgNO3 concentration and seed morphology in the achievement of tunable shape control in gold nanostars. Nanoscale 11(6), 2946–2958 (2019). https://doi.org/10.1039/C8NR07615D

    Article  CAS  Google Scholar 

  25. R. Stiufiuc et al., One-step synthesis of PEGylated gold nanoparticles with tunable surface charge. J. Nanomater. (2013). https://doi.org/10.1155/2013/146031

    Article  Google Scholar 

  26. G.A. Tığ, Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly(l-arginine)-graphene oxide composite. J. Electroanal. Chem. 807, 19–28 (2017). https://doi.org/10.1016/j.jelechem.2017.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received partial support from the National Research Foundation (NRF) of Korea through the National R&D Program, funded by the Ministry of Science and ICT (2021M3H4A4079521), as well as from the Korean government (No. NRF-2018R1D1A1B05049787). Additionally, support was provided by the BK21 FOUR Project.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, Methodology, Investigation, Software, Formal analysis, Visualization, Writing—Original Draft, and Writing—Review & Editing. HEK: Visualization, Material and Equipment Resources, Writing—Review & Editing. MK: Material and Equipment Resources, Supervision, and Writing—Review & Editing. Y-SK: Material and Equipment Resources, Writing—Review & Editing, Supervision, Funding acquisition. All authors approved the final manuscript.

Corresponding authors

Correspondence to Minhee Kang or Yong-Sang Kim.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 317 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuck, A., Kim, H.E., Kang, M. et al. Gold nanostar-modified electrochemical sensor for highly sensitive renin quantification as a marker of tissue-perfusion. MRS Communications 13, 1150–1155 (2023). https://doi.org/10.1557/s43579-023-00414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00414-6

Keywords

Navigation