Skip to main content
Log in

Effect of the carbon nanotube length on the electrical resistance relaxation of viscoelastic polymer nanocomposites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The effect of carbon nanotube (CNT) length on the electrical resistance relaxation of CNT/polysulfone composites is investigated. CNTs were fragmented using controlled high-density energy via ultrasonic vibration. CNT/polysulfone composites were fabricated via solution casting technique, using non-fragmented and fragmented CNTs, and dedicated specimens were subjected to axial tension within the elastic regime. The electrical resistance of the composites was recorded with the aim of tracking the electrical signal during the viscoelastic relaxation. The experimental data were fitted to an electromechanical model inspired from the Burgers equation for polymers creep. Shorter CNTs promote higher electromechanical sensitivity during the mechanical relaxation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study is included in this published article.

References

  1. H. Abbasi, M. Antunes, J.I. Velasco, Prog. Mater. Sci. 103, 319 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003

    Article  CAS  Google Scholar 

  2. S. Araby, B. Philips, Q. Meng, J. Ma, T. Laoui, C.H. Wang, Compos. B Eng. 212, 108675 (2021). https://doi.org/10.1016/j.compositesb.2021.108675

    Article  CAS  Google Scholar 

  3. A.M. Díez-Pascual, Polymers 12, 872 (2020). https://doi.org/10.3390/polym12040872

    Article  CAS  Google Scholar 

  4. R. Eivazzadeh-Keihan, A. Maleki, M. de la Guardia, M.S. Bani et al., J. Adv. Res. 18, 185 (2019). https://doi.org/10.1016/j.jare.2019.03.011

    Article  CAS  Google Scholar 

  5. F. Avilés, A.I. Oliva-Avilés, M. Cen-Puc, Adv. Eng. Mater. 1701159, 1 (2018). https://doi.org/10.1002/adem.201701159

    Article  CAS  Google Scholar 

  6. A.S. Fiorillo, C.D. Critello, S.A. Pullano, Sens. Actuator A Phys. 281, 156 (2018). https://doi.org/10.1016/j.sna.2018.07.006

    Article  CAS  Google Scholar 

  7. D.D. Chung, J. Mater. Sci. 55, 15367 (2020). https://doi.org/10.1007/s10853-020-05099-z

    Article  CAS  Google Scholar 

  8. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009). https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  9. S. Jung, H.W. Choi, F.C. Mocanu, D.-W. Shin et al., Sci. Rep. 9, 20376 (2019). https://doi.org/10.1038/s41598-019-56940-8

    Article  CAS  Google Scholar 

  10. X. Zeng, X. Xu, P.M. Shenai, E. Kovalev et al., J. Phys. Chem. C 115, 21685 (2011). https://doi.org/10.1021/jp207388n

    Article  CAS  Google Scholar 

  11. C. Kralovec, M. Schagerl, Sensors 20, 826 (2020). https://doi.org/10.3390/s20030826

    Article  Google Scholar 

  12. Y. Wang, Y. Fu, Z. Meng, B. Wan, B. Han, J. Mater. Sci. 57, 12416 (2022). https://doi.org/10.1007/s10853-022-07402-6

    Article  CAS  Google Scholar 

  13. Q. Zheng, J.F. Zhou, Y.H. Song, J. Mater. Res. 19, 2625 (2004). https://doi.org/10.1557/JMR.2004.0355

    Article  CAS  Google Scholar 

  14. L. Wang, T. Ding, P. Wang, Compos Sci. Technol. 68, 3448 (2008). https://doi.org/10.1016/j.compscitech.2008.08.018

    Article  CAS  Google Scholar 

  15. X. Wang, B. Yang, Q. Li, F. Wang et al., Compos. Sci. Technol. 204, 108645 (2021). https://doi.org/10.1016/j.compscitech.2021.108645

    Article  CAS  Google Scholar 

  16. Y. Gao, Q. Li, A. Dong, F. Wang et al., Sens. Actuator A Phys. 310, 112041 (2020). https://doi.org/10.1016/j.sna.2020.112041

    Article  CAS  Google Scholar 

  17. W. Klimm, K. Kwok, Int. J. Mech. Mater. Des. 18, 769 (2022). https://doi.org/10.1007/s10999-022-09603-y

    Article  CAS  Google Scholar 

  18. X.-W. Zhang, Y. Pan, Q. Zheng, X.-S. Yi, J Polym. Sci. B Polym. Phys. 38, 2739 (2000). https://doi.org/10.1002/1099-0488(20001101)38:21%3c2739::AID-POLB40%3e3.0.CO;2-O

    Article  CAS  Google Scholar 

  19. A. Voet, F.R. Cook, A.K. Sircar, Rubber Chem. Technol. 44, 175 (1971). https://doi.org/10.5254/1.3547352

    Article  CAS  Google Scholar 

  20. A.K. Sircar, A. Voet, F.R. Cook, Rubber Chem. Technol. 44, 185 (1971). https://doi.org/10.5254/1.3547353

    Article  CAS  Google Scholar 

  21. J. Kost, A. Foux, M. Narkis, Polym. Eng. Sci. 34, 1628 (1994). https://doi.org/10.1002/pen.760342108

    Article  CAS  Google Scholar 

  22. F. Aviles, A.I. Oliva, G. Ventura, A. May-Pat et al., Eur. Polym. J. 110, 394 (2019). https://doi.org/10.1016/j.eurpolymj.2018.12.002

    Article  CAS  Google Scholar 

  23. J. Cob, A.I. Oliva-Avilés, F. Avilés, A.I. Oliva, Mater. Res. Express 6, 115024 (2019). https://doi.org/10.1088/2053-1591/ab447b

    Article  CAS  Google Scholar 

  24. A.I. Oliva-Avilés, F. Avilés, V. Sosa, A.I. Oliva et al., Nanotechnology 23, 465710 (2012). https://doi.org/10.1088/0957-4484/23/46/465710

    Article  CAS  Google Scholar 

  25. A.I. Oliva-Avilés, F. Avilés, V. Sosa, Carbon 49, 2989 (2011). https://doi.org/10.1016/j.carbon.2011.03.017

    Article  CAS  Google Scholar 

  26. E. Huerta, A.I. Oliva, J.E. Corona, Rev. Mex. Fis. 56, 317 (2010)

    Google Scholar 

  27. X. Wang, Q. Jiang, W. Xu, W. Cai, Y. Inoue, Y. Zhu, Carbon 53, 145 (2013). https://doi.org/10.1016/j.carbon.2012.10.041

    Article  CAS  Google Scholar 

  28. A. Haque, A. Ramasetty, Compos. Struct. 71, 68 (2005). https://doi.org/10.1016/j.compstruct.2004.09.029

    Article  Google Scholar 

  29. S. Vidhate, J. Chung, V. Vaidyanathan, N. D’Souza, Mat .Lett. 63, 1771 (2009). https://doi.org/10.1016/j.matlet.2009.05.029

    Article  CAS  Google Scholar 

  30. A. Linarts, M. Knite, Adv. Mat. Res. 1117, 52 (2015). https://doi.org/10.4028/www.scientific.net/AMR.1117.52

    Article  Google Scholar 

Download references

Acknowledgments

AI Oliva-Avilés acknowledges the support of the “Fondo Sectorial de Investigación para la Educación” through the SEP-CONACYT grant No. 235905. Authors would also like to thank J.E. Corona for the support with the mechanical tests.

Funding

This research was funded by the “Fondo Sectorial de Investigación para la Educación” through the SEP-CONACYT grant No. 235905.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AIOA; methodology, GM; software, GM; formal analysis, GM, AIO and AIOA; writing original draft preparation, AIOA; review and editing, GM and AIO; project administration, AIOA; funding acquisition, AIOA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. I. Oliva-Avilés.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2543 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madera, G.A., Oliva, A.I. & Oliva-Avilés, A.I. Effect of the carbon nanotube length on the electrical resistance relaxation of viscoelastic polymer nanocomposites. MRS Communications 13, 1144–1149 (2023). https://doi.org/10.1557/s43579-023-00413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00413-7

Keywords

Navigation