Skip to main content

Advertisement

Log in

Enhanced trimethylamine gas sensor sensitivity based on quartz crystal microbalance using nanofibers overlaid with maltodextrin

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study proposes a novel quartz crystal microbalance-based sensor using polyvinyl acetate nanofibers overlaid with maltodextrin to enhance sensitivity toward trimethylamine (TMA) gas. The sensor demonstrated a remarkable increase in sensitivity by 8.3 times, with a detection limit of 15.6 ppm. The enhanced sensitivity is due to reversible intermolecular Lewis acid–base interaction between active groups of maltodextrin and TMA gas molecules. Moreover, the sensor exhibited good selectivity, stability, and fast response and recovery times of 141 s and 116 s, respectively. The proposed sensor offers a promising alternative to conventional methods for accurately monitoring TMA gas levels in the air.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. P. Zhu, Y. Wang, P. Ma, S. Li, F. Fan, K. Cui et al., Low-power and high-performance trimethylamine gas sensor based on n–n heterojunction microbelts of perylene diimide/CdS. Anal. Chem. 91, 5591–5598 (2019). https://doi.org/10.1021/acs.analchem.8b04497

    Article  CAS  Google Scholar 

  2. A.K. Diallo, J. Tardy, Z.Q. Zhang, F. Bessueille, N. Jaffrezic-Renault, M. Lemiti, Trimethylamine biosensor based on pentacene enzymatic organic field effect transistor. Appl. Phys. Lett. 94, 263302 (2009). https://doi.org/10.1063/1.3167805

    Article  CAS  Google Scholar 

  3. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device—a first-principles study. Chem. Phys. 501, 78–85 (2018). https://doi.org/10.1016/j.chemphys.2017.12.003

    Article  CAS  Google Scholar 

  4. A. Rianjanu, R. Aflaha, N.I. Khamidy, M. Djamal, K. Triyana, H.S. Wasisto, Room-temperature ppb-level trimethylamine gas sensors functionalized with citric acid-doped polyvinyl acetate nanofibrous mats. Mater. Adv. 2, 3705–3714 (2021). https://doi.org/10.1039/D1MA00152C

    Article  CAS  Google Scholar 

  5. NIOSH Pocket Guide to Chemical Hazards. DHHS Publication No. 2005-149 (NIOSH, 1993), pp. 387–391. https://doi.org/10.1109/icnn.1993.298588

  6. E. Shumilina, R. Slizyte, R. Mozuraityte, A. Dykyy, T.A. Stein, A. Dikiy, Quality changes of Salmon by-products during storage: assessment and quantification by NMR. Food Chem. 211, 803–811 (2016). https://doi.org/10.1016/j.foodchem.2016.05.088

    Article  CAS  Google Scholar 

  7. D. Wang, K. Gu, Q. Zhao, C. Zhai, T. Yang, Q. Lu et al., Synthesis and trimethylamine sensing properties of spherical V2O5 hierarchical structures. N. J. Chem. 42, 14188–14193 (2018). https://doi.org/10.1039/c8nj02506a

    Article  CAS  Google Scholar 

  8. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959). https://doi.org/10.1007/BF01337937

    Article  CAS  Google Scholar 

  9. D. Zhang, R. Mao, X. Song, D. Wang, H. Zhang, H. Xia et al., Humidity sensing properties and respiratory behavior detection based on chitosan-halloysite nanotubes film coated QCM sensor combined with support vector machine. Sens. Actuators B 374, 132824 (2023). https://doi.org/10.1016/j.snb.2022.132824

    Article  CAS  Google Scholar 

  10. A. Rianjanu, F. Fauzi, K. Triyana, H.S. Wasisto, Electrospun nanofibers for quartz crystal microbalance gas sensors: a review. ACS Appl. Nano Mater. 4, 9957–9975 (2021). https://doi.org/10.1021/acsanm.1c01895

    Article  CAS  Google Scholar 

  11. D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang, High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in situ oxidative polymerization method. Sens. Actuators B 262, 531–541 (2018). https://doi.org/10.1016/j.snb.2018.02.012

    Article  CAS  Google Scholar 

  12. W. Yan, D. Zhang, X. Liu, X. Chen, C. Yang, Z. Kang, Guar gum/ethyl cellulose–polyvinyl pyrrolidone composite-based quartz crystal microbalance humidity sensor for human respiration monitoring. ACS Appl. Mater. Interfaces 14, 31343–31353 (2022). https://doi.org/10.1021/acsami.2c08434

    Article  CAS  Google Scholar 

  13. D. Zhou, Z. Kang, X. Liu, W. Yan, H. Cai, J. Xu et al., High sensitivity ammonia QCM sensor based on ZnO nanoflower assisted cellulose acetate–polyaniline composite nanofibers. Sens. Actuators B 392, 134072 (2023). https://doi.org/10.1016/j.snb.2023.134072

    Article  CAS  Google Scholar 

  14. N.I. Khamidy, R. Aflaha, E. Nurfani, M. Djamal, K. Triyana, H.S. Wasisto et al., Influence of dopant concentration on ammonia sensing performance of citric acid-doped polyvinyl acetate nanofibers. Anal. Methods 14, 4956–4966 (2022). https://doi.org/10.1039/d2ay01382g

    Article  CAS  Google Scholar 

  15. H. Tian, S. Chen, D. Li, X. Lou, C. Chen, H. Yu, Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics. J. Dairy Sci. 105, 7242–7252 (2022). https://doi.org/10.3168/jds.2021-21082

    Article  CAS  Google Scholar 

  16. K. Triyana, A. Rianjanu, D.B. Nugroho, A.H. As’ari, A. Kusumaatmaja, R. Roto et al., A highly sensitive safrole sensor based on polyvinyl acetate (PVAc) nanofiber-coated QCM. Sci. Rep. 9, 15407 (2019). https://doi.org/10.1038/s41598-019-51851-0

    Article  CAS  Google Scholar 

  17. Y. Zhou, Y. Liu, M. Zhang, Z. Feng, D.-G. Yu, K. Wang, Electrospun nanofiber membranes for air filtration: a review. Nanomaterials (2022). https://doi.org/10.3390/nano12071077

    Article  Google Scholar 

  18. R. Aflaha, H. Afiyanti, Z.N. Azizah, H. Khoirudin, A. Rianjanu, A. Kusumaatmaja et al., Improving ammonia sensing performance of quartz crystal microbalance (QCM) coated with nanofibers and polyaniline (PANi) overlay. Biosens. Bioelectron. X 13, 100300 (2023). https://doi.org/10.1016/j.biosx.2022.100300

    Article  CAS  Google Scholar 

  19. E. Sritham, S. Gunasekaran, FTIR spectroscopic evaluation of sucrose–maltodextrin–sodium citrate bioglass. Food Hydrocoll. 70, 371–382 (2017). https://doi.org/10.1016/j.foodhyd.2017.04.023

    Article  CAS  Google Scholar 

  20. E. Haghighi, S. Zeinali, Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film. Microporous Mesoporous Mater. 300, 110065 (2020). https://doi.org/10.1016/j.micromeso.2020.110065

    Article  CAS  Google Scholar 

  21. Z. Kang, D. Zhang, T. Li, X. Liu, X. Song, Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuators B 345, 130299 (2021). https://doi.org/10.1016/j.snb.2021.130299

    Article  CAS  Google Scholar 

  22. H. Fu, Q. Wang, J. Ding, Y. Zhu, M. Zhang, C. Yang et al., Fe2O3 nanotube coating micro-fiber interferometer for ammonia detection. Sens. Actuators B (2020). https://doi.org/10.1016/j.snb.2019.127186

    Article  Google Scholar 

  23. S. Cui, J. Wang, X. Wang, Fabrication and design of a toxic gas sensor based on polyaniline/titanium dioxide nanocomposite film by layer-by-layer self-assembly. RSC Adv. 5, 58211–58219 (2015). https://doi.org/10.1039/C5RA06388D

    Article  CAS  Google Scholar 

  24. M.M. Ayad, N.L. Torad, Quartz crystal microbalance sensor for detection of aliphatic amines vapours. Sens. Actuators B 147, 481–487 (2010). https://doi.org/10.1016/j.snb.2010.03.064

    Article  CAS  Google Scholar 

  25. S. Cui, L. Yang, J. Wang, X. Wang, Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sens. Actuators B 233, 337–346 (2016). https://doi.org/10.1016/j.snb.2016.04.093

    Article  CAS  Google Scholar 

  26. S. Roy, S. Basu, ZnO thin film sensors for detecting dimethyl- and trimethyl-amine vapors. J. Mater. Sci. Mater. Electron. 15, 321–326 (2004). https://doi.org/10.1023/B:JMSE.0000024234.49920.7b

    Article  CAS  Google Scholar 

  27. C.-H. Kwak, H.-S. Woo, J.-H. Lee, Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sens. Actuators B 204, 231–238 (2014). https://doi.org/10.1016/j.snb.2014.07.084

    Article  CAS  Google Scholar 

  28. J.-Y. Jung, C.-S. Lee, Characteristics of the TiO2/SnO2 thick film semiconductor gas sensor to determine fish freshness. J. Ind. Eng. Chem. 17, 237–242 (2011). https://doi.org/10.1016/j.jiec.2011.02.012

    Article  CAS  Google Scholar 

  29. Y. Jia, H. Yu, Y. Zhang, F. Dong, Z. Li, Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surf. B 148, 263–269 (2016). https://doi.org/10.1016/j.colsurfb.2016.09.007

    Article  CAS  Google Scholar 

  30. Y. Jia, L. Chen, H. Yu, Y. Zhang, F. Dong, Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection. RSC Adv. 5, 40620–40627 (2015). https://doi.org/10.1039/C5RA04890G

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all PT Nanosense Instrument Indonesia employees who have provided technical support in this presented research work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RA: conceptualization; investigation; formal analysis; writing-original draft; writing-review and editing. LK, AHA, and NLIS: investigation. AK, AR, and RR: formal analysis; writing-review and editing. KT: resources; supervision; formal analysis; writing-review and editing. All authors approved the final manuscript.

Corresponding author

Correspondence to Kuwat Triyana.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aflaha, R., Katriani, L., As’ari, A.H. et al. Enhanced trimethylamine gas sensor sensitivity based on quartz crystal microbalance using nanofibers overlaid with maltodextrin. MRS Communications 13, 664–672 (2023). https://doi.org/10.1557/s43579-023-00409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00409-3

Keywords

Navigation