Abstract
This study proposes a novel quartz crystal microbalance-based sensor using polyvinyl acetate nanofibers overlaid with maltodextrin to enhance sensitivity toward trimethylamine (TMA) gas. The sensor demonstrated a remarkable increase in sensitivity by 8.3 times, with a detection limit of 15.6 ppm. The enhanced sensitivity is due to reversible intermolecular Lewis acid–base interaction between active groups of maltodextrin and TMA gas molecules. Moreover, the sensor exhibited good selectivity, stability, and fast response and recovery times of 141 s and 116 s, respectively. The proposed sensor offers a promising alternative to conventional methods for accurately monitoring TMA gas levels in the air.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.
References
P. Zhu, Y. Wang, P. Ma, S. Li, F. Fan, K. Cui et al., Low-power and high-performance trimethylamine gas sensor based on n–n heterojunction microbelts of perylene diimide/CdS. Anal. Chem. 91, 5591–5598 (2019). https://doi.org/10.1021/acs.analchem.8b04497
A.K. Diallo, J. Tardy, Z.Q. Zhang, F. Bessueille, N. Jaffrezic-Renault, M. Lemiti, Trimethylamine biosensor based on pentacene enzymatic organic field effect transistor. Appl. Phys. Lett. 94, 263302 (2009). https://doi.org/10.1063/1.3167805
R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device—a first-principles study. Chem. Phys. 501, 78–85 (2018). https://doi.org/10.1016/j.chemphys.2017.12.003
A. Rianjanu, R. Aflaha, N.I. Khamidy, M. Djamal, K. Triyana, H.S. Wasisto, Room-temperature ppb-level trimethylamine gas sensors functionalized with citric acid-doped polyvinyl acetate nanofibrous mats. Mater. Adv. 2, 3705–3714 (2021). https://doi.org/10.1039/D1MA00152C
NIOSH Pocket Guide to Chemical Hazards. DHHS Publication No. 2005-149 (NIOSH, 1993), pp. 387–391. https://doi.org/10.1109/icnn.1993.298588
E. Shumilina, R. Slizyte, R. Mozuraityte, A. Dykyy, T.A. Stein, A. Dikiy, Quality changes of Salmon by-products during storage: assessment and quantification by NMR. Food Chem. 211, 803–811 (2016). https://doi.org/10.1016/j.foodchem.2016.05.088
D. Wang, K. Gu, Q. Zhao, C. Zhai, T. Yang, Q. Lu et al., Synthesis and trimethylamine sensing properties of spherical V2O5 hierarchical structures. N. J. Chem. 42, 14188–14193 (2018). https://doi.org/10.1039/c8nj02506a
G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959). https://doi.org/10.1007/BF01337937
D. Zhang, R. Mao, X. Song, D. Wang, H. Zhang, H. Xia et al., Humidity sensing properties and respiratory behavior detection based on chitosan-halloysite nanotubes film coated QCM sensor combined with support vector machine. Sens. Actuators B 374, 132824 (2023). https://doi.org/10.1016/j.snb.2022.132824
A. Rianjanu, F. Fauzi, K. Triyana, H.S. Wasisto, Electrospun nanofibers for quartz crystal microbalance gas sensors: a review. ACS Appl. Nano Mater. 4, 9957–9975 (2021). https://doi.org/10.1021/acsanm.1c01895
D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang, High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in situ oxidative polymerization method. Sens. Actuators B 262, 531–541 (2018). https://doi.org/10.1016/j.snb.2018.02.012
W. Yan, D. Zhang, X. Liu, X. Chen, C. Yang, Z. Kang, Guar gum/ethyl cellulose–polyvinyl pyrrolidone composite-based quartz crystal microbalance humidity sensor for human respiration monitoring. ACS Appl. Mater. Interfaces 14, 31343–31353 (2022). https://doi.org/10.1021/acsami.2c08434
D. Zhou, Z. Kang, X. Liu, W. Yan, H. Cai, J. Xu et al., High sensitivity ammonia QCM sensor based on ZnO nanoflower assisted cellulose acetate–polyaniline composite nanofibers. Sens. Actuators B 392, 134072 (2023). https://doi.org/10.1016/j.snb.2023.134072
N.I. Khamidy, R. Aflaha, E. Nurfani, M. Djamal, K. Triyana, H.S. Wasisto et al., Influence of dopant concentration on ammonia sensing performance of citric acid-doped polyvinyl acetate nanofibers. Anal. Methods 14, 4956–4966 (2022). https://doi.org/10.1039/d2ay01382g
H. Tian, S. Chen, D. Li, X. Lou, C. Chen, H. Yu, Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics. J. Dairy Sci. 105, 7242–7252 (2022). https://doi.org/10.3168/jds.2021-21082
K. Triyana, A. Rianjanu, D.B. Nugroho, A.H. As’ari, A. Kusumaatmaja, R. Roto et al., A highly sensitive safrole sensor based on polyvinyl acetate (PVAc) nanofiber-coated QCM. Sci. Rep. 9, 15407 (2019). https://doi.org/10.1038/s41598-019-51851-0
Y. Zhou, Y. Liu, M. Zhang, Z. Feng, D.-G. Yu, K. Wang, Electrospun nanofiber membranes for air filtration: a review. Nanomaterials (2022). https://doi.org/10.3390/nano12071077
R. Aflaha, H. Afiyanti, Z.N. Azizah, H. Khoirudin, A. Rianjanu, A. Kusumaatmaja et al., Improving ammonia sensing performance of quartz crystal microbalance (QCM) coated with nanofibers and polyaniline (PANi) overlay. Biosens. Bioelectron. X 13, 100300 (2023). https://doi.org/10.1016/j.biosx.2022.100300
E. Sritham, S. Gunasekaran, FTIR spectroscopic evaluation of sucrose–maltodextrin–sodium citrate bioglass. Food Hydrocoll. 70, 371–382 (2017). https://doi.org/10.1016/j.foodhyd.2017.04.023
E. Haghighi, S. Zeinali, Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film. Microporous Mesoporous Mater. 300, 110065 (2020). https://doi.org/10.1016/j.micromeso.2020.110065
Z. Kang, D. Zhang, T. Li, X. Liu, X. Song, Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuators B 345, 130299 (2021). https://doi.org/10.1016/j.snb.2021.130299
H. Fu, Q. Wang, J. Ding, Y. Zhu, M. Zhang, C. Yang et al., Fe2O3 nanotube coating micro-fiber interferometer for ammonia detection. Sens. Actuators B (2020). https://doi.org/10.1016/j.snb.2019.127186
S. Cui, J. Wang, X. Wang, Fabrication and design of a toxic gas sensor based on polyaniline/titanium dioxide nanocomposite film by layer-by-layer self-assembly. RSC Adv. 5, 58211–58219 (2015). https://doi.org/10.1039/C5RA06388D
M.M. Ayad, N.L. Torad, Quartz crystal microbalance sensor for detection of aliphatic amines vapours. Sens. Actuators B 147, 481–487 (2010). https://doi.org/10.1016/j.snb.2010.03.064
S. Cui, L. Yang, J. Wang, X. Wang, Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sens. Actuators B 233, 337–346 (2016). https://doi.org/10.1016/j.snb.2016.04.093
S. Roy, S. Basu, ZnO thin film sensors for detecting dimethyl- and trimethyl-amine vapors. J. Mater. Sci. Mater. Electron. 15, 321–326 (2004). https://doi.org/10.1023/B:JMSE.0000024234.49920.7b
C.-H. Kwak, H.-S. Woo, J.-H. Lee, Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sens. Actuators B 204, 231–238 (2014). https://doi.org/10.1016/j.snb.2014.07.084
J.-Y. Jung, C.-S. Lee, Characteristics of the TiO2/SnO2 thick film semiconductor gas sensor to determine fish freshness. J. Ind. Eng. Chem. 17, 237–242 (2011). https://doi.org/10.1016/j.jiec.2011.02.012
Y. Jia, H. Yu, Y. Zhang, F. Dong, Z. Li, Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surf. B 148, 263–269 (2016). https://doi.org/10.1016/j.colsurfb.2016.09.007
Y. Jia, L. Chen, H. Yu, Y. Zhang, F. Dong, Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection. RSC Adv. 5, 40620–40627 (2015). https://doi.org/10.1039/C5RA04890G
Acknowledgments
The authors thank all PT Nanosense Instrument Indonesia employees who have provided technical support in this presented research work.
Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Contributions
RA: conceptualization; investigation; formal analysis; writing-original draft; writing-review and editing. LK, AHA, and NLIS: investigation. AK, AR, and RR: formal analysis; writing-review and editing. KT: resources; supervision; formal analysis; writing-review and editing. All authors approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Aflaha, R., Katriani, L., As’ari, A.H. et al. Enhanced trimethylamine gas sensor sensitivity based on quartz crystal microbalance using nanofibers overlaid with maltodextrin. MRS Communications 13, 664–672 (2023). https://doi.org/10.1557/s43579-023-00409-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43579-023-00409-3