Skip to main content
Log in

On the influence of sodium alginate on struvite crystal morphology

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Struvite or magnesium ammonium phosphate hexahydrate (H16MgNO10P) was synthesized in the presence of sodium alginate to determine the impact of extracellular polymeric substances (EPS) on struvite formation. Bulk crystallization of struvite at a 1.3:1:1 molar ratio of Mg:N:P, respectively, showed that in the presence of increasing sodium alginate concentration, struvite crystal habit changed from prismatic to plate-like twinned morphology. A possible mechanism of the adsorption of sodium alginate at [001]cc facets of struvite is proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Wei et al., Probing the effect of humic acid on the nucleation and growth kinetics of struvite by constant composition technique. Chem. Eng. J. 378, 122130 (2019). https://doi.org/10.1016/j.cej.2019.122130

    Article  CAS  Google Scholar 

  2. Md. Mukhlesur Rahman, M.A. Mohd, U.R. Salleh, A. Ahsan, M.M. Hossain, C.S. Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arab. J. Chem. 7, 139–155 (2014). https://doi.org/10.1016/j.arabjc.2013.10.007

    Article  CAS  Google Scholar 

  3. R. Taddeo, M. Honkanen, K. Kolppo, R. Lepistö, Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: process feasibility and struvite quality. J. Environ. Manage. 212, 433–439 (2018). https://doi.org/10.1016/j.jenvman.2018.02.027

    Article  CAS  Google Scholar 

  4. A. Muhmood, S. Wu, J. Lu, Z. Ajmal, H. Luo, R. Dong, Nutrient recovery from anaerobically digested chicken slurry via struvite: Performance optimization and interactions with heavy metals and pathogens. Sci. Total Environ. 635, 1–9 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.129

    Article  CAS  Google Scholar 

  5. H. Wu, C. Vaneeckhaute, Nutrient recovery from wastewater: a review on the integrated physicochemical technologies of ammonia stripping, adsorption and struvite precipitation. Chem. Eng. J. 433, 133664 (2022). https://doi.org/10.1016/j.cej.2021.133664

    Article  CAS  Google Scholar 

  6. J. Monetti, P. Ledezma, B. Virdis, S. Freguia, Nutrient recovery by bio-electroconcentration is limited by wastewater conductivity. ACS Omega 4, 2152–2159 (2019). https://doi.org/10.1021/acsomega.8b02737

    Article  CAS  Google Scholar 

  7. A. Muhmood, J. Lu, R. Dong, S. Wu, Formation of struvite from agricultural wastewaters and its reuse on farmlands: status and hindrances to closing the nutrient loop. J. Environ. Manage. 230, 1–13 (2019). https://doi.org/10.1016/j.jenvman.2018.09.030

    Article  CAS  Google Scholar 

  8. C. Zhang, D. Hu, R. Yang, Z. Liu, Effect of sodium alginate on phosphorus recovery by vivianite precipitation. J. Environ. Sci. 93, 164–169 (2020). https://doi.org/10.1016/j.jes.2020.04.007

    Article  CAS  Google Scholar 

  9. Y. Luo et al., Bacterial mineralization of struvite using MgO as magnesium source and its potential for nutrient recovery. Chem. Eng. J. 351, 195–202 (2018). https://doi.org/10.1016/j.cej.2018.06.106

    Article  CAS  Google Scholar 

  10. N.Y. Acelas, E. Flórez, D. López, Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions. Desalin. Water Treat. 54(9), 2468–2479 (2015). https://doi.org/10.1080/19443994.2014.902337

    Article  CAS  Google Scholar 

  11. B. Liu, A. Giannis, J. Zhang, V.W.-C. Chang, J.-Y. Wang, Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere 93(11), 2738–2747 (2013). https://doi.org/10.1016/j.chemosphere.2013.09.025

    Article  CAS  Google Scholar 

  12. N. Hutnik, K. Piotrowski, B. Wierzbowska, A. Matynia, Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions. Cryst. Res. Technol. 46(5), 443–449 (2011). https://doi.org/10.1002/crat.201100049

    Article  CAS  Google Scholar 

  13. A. Siciliano, C. Limonti, G.M. Curcio, R. Molinari, Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability (2020). https://doi.org/10.3390/su12187538

    Article  Google Scholar 

  14. C. Moragaspitiya, J. Rajapakse, G.J. Millar, Effect of struvite and organic acids on immobilization of copper and zinc in contaminated bio-retention filter media. J. Environ. Sci. 97, 35–44 (2020). https://doi.org/10.1016/j.jes.2020.04.023

    Article  CAS  Google Scholar 

  15. D.S. Perwitasari, S. Muryanto, J. Jamari, A.P. Bayuseno, Optimization of struvite crystallization and heavy metal recovery in wastewater using response surface methodology. Orient. J. Chem. 34(1), 336–345 (2018). https://doi.org/10.13005/ojc/340136

    Article  CAS  Google Scholar 

  16. A. Capdevielle, E. Sýkorová, F. Béline, M.-L. Daumer, Effects of organic matter on crystallization of struvite in biologically treated swine wastewater. Environ. Technol. 37(7), 880–892 (2016). https://doi.org/10.1080/09593330.2015.1088580

    Article  CAS  Google Scholar 

  17. J. Wu et al., Effects of physicochemical parameters on struvite crystallization based on kinetics. Int. J. Environ. Res. Public Health (2022). https://doi.org/10.3390/ijerph19127204

    Article  Google Scholar 

  18. A.N. Kofina, K.D. Demadis, P.G. Koutsoukos, The effect of citrate and phosphocitrate on struvite spontaneous precipitation. Cryst. Growth Des. 7(12), 2705–2712 (2007). https://doi.org/10.1021/cg0603927

    Article  CAS  Google Scholar 

  19. D. Kim, J. Moore, C.P. McCoy, N.J. Irwin, J.D. Rimer, Engaging a battle on two fronts: dual role of polyphosphates as potent inhibitors of struvite nucleation and crystal growth. Chem. Mater. 32(19), 8672–8682 (2020). https://doi.org/10.1021/acs.chemmater.0c03180

    Article  CAS  Google Scholar 

  20. Q. Zhang, S. Zhao, X. Ye, W. Xiao, Effects of organic substances on struvite crystallization and recovery. Desalin. Water Treat. 57(23), 10924–10933 (2016). https://doi.org/10.1080/19443994.2015.1040850

    Article  CAS  Google Scholar 

  21. A. Rabinovich, A.A. Rouff, Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater. ACS ES&T Water 1(4), 910–918 (2021). https://doi.org/10.1021/acsestwater.0c00234

    Article  CAS  Google Scholar 

  22. L.Z. Lakshtanov, D.A. Belova, D.V. Okhrimenko, S.L.S. Stipp, Role of alginate in calcite recrystallization. Cryst. Growth Des. 15(1), 419–427 (2015). https://doi.org/10.1021/cg501492c

    Article  CAS  Google Scholar 

  23. E. Dalas, K. Barlos, D. Gatos, P. Manis, Effect of the cysteine-rich Mdm2 peptide in the crystal growth of hydroxyapatite in aqueous solution. Cryst. Growth Des. 7(1), 132–135 (2007). https://doi.org/10.1021/cg0506121

    Article  CAS  Google Scholar 

  24. L. Wei, T. Hong, H. Liu, T. Chen, The effect of sodium alginate on struvite crystallization in aqueous solution: a kinetics study. J. Cryst. Growth 473, 60–65 (2017). https://doi.org/10.1016/j.jcrysgro.2017.03.039

    Article  CAS  Google Scholar 

  25. I.J.C. Dela Cruz, J.V. Perez, B.G. Alamani, G. Capellades, A.S. Myerson, Influence of volume on the nucleation of model organic molecular crystals through an induction time approach. Cryst. Growth Des. (2021). https://doi.org/10.1021/acs.cgd.1c00101

    Article  Google Scholar 

  26. I. Rodríguez-Ruiz et al., Transient calcium carbonate hexahydrate (ikaite) nucleated and stabilized in confined nano- and picovolumes. Cryst. Growth Des. 14(2), 792–802 (2014). https://doi.org/10.1021/cg401672v

    Article  CAS  Google Scholar 

  27. H. Arslanoglu, Adsorption of micronutrient metal ion onto struvite to prepare slow release multielement fertilizer: copper(II) doped-struvite. Chemosphere 217, 393–401 (2019). https://doi.org/10.1016/j.chemosphere.2018.10.207

    Article  CAS  Google Scholar 

  28. E. Heraldy, F. Rahmawati, D.P. Putra, Preparation of struvite from desalination waste. J. Environ. Chem. Eng. 5(1666), 1675 (2017). https://doi.org/10.1016/j.jece.2017.03.005

    Article  CAS  Google Scholar 

  29. K. Zhao et al., Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catal. Today. 236, 127–134 (2014). https://doi.org/10.1016/j.cattod.2014.03.041

    Article  CAS  Google Scholar 

  30. Z. Ye, Y. Shen, X. Ye, Z. Zhang, S. Chen, J. Shi, Phosphorus recovery from wastewater by struvite crystallization: property of aggregates. J. Environ. Sci. 26(5), 991–1000 (2014). https://doi.org/10.1016/S1001-0742(13)60536-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work acknowledges the Department of Science Engineering Research and Development for Technology (DOST-ERDT) for the financial assistance. It also acknowledges the Chemical Engineering Analytical Laboratory (CEAL), Department of Chemical Engineering, University of the Philippines Diliman, Quezon City, for the SEM, FTIR and IC training. The Crystallization and Bio-Inspired Engineering Group (CBEG) under the Bioprocess Engineering Laboratory is acknowledged for technical support and for the equipment used during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan G. Alamani.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, I.J.C.D., Potato, D.N.C. & Alamani, B.G. On the influence of sodium alginate on struvite crystal morphology. MRS Communications 13, 641–646 (2023). https://doi.org/10.1557/s43579-023-00406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00406-6

Keywords

Navigation