Skip to main content

Advertisement

Log in

Recent progress in lightweight high-entropy alloys

  • MRS 50th Anniversary Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have attracted extensive attention due to their novel compositional design and excellent properties, and the concept of “entropy regulation” has been widely used to develop new performance-oriented alloys. Lightweight high-entropy alloys (LHEAs) are a kind of important lightweight materials under the guidance of “entropy regulation”. They exhibit a series of special properties related to the high alloying elements and high mixing entropy, including high specific strength, high specific hardness, excellent corrosion resistance. These advantages make LHEAs great application potential in the lightweight material fields. However, there are still many questions to be solved. For example, phase formation rules of LHEAs are still ambiguous, and comprehensive performance under specific service environment needs further consideration. Therefore, this paper reviews the composition design, phase formation rules, mechanical properties, physical properties, and chemical properties of some typical LHEAs, and points out the problems it faces and the direction of future development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Rashad, F. Pan, M. Asif, Exploring mechanical behavior of Mg–6Zn alloy reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 649, 263–269 (2016)

    CAS  Google Scholar 

  2. Q. Zhu, L. Cao, X. Wu et al., Effect of Ag on age-hardening response of Al-Zn-Mg-Cu alloys. Mater. Sci. Eng. A 754, 265–268 (2019)

    CAS  Google Scholar 

  3. Q. Yu, L. Qi, T. Tsuru et al., Origin of dramatic oxygen solute strengthening effect in titanium. Science 347(6222), 635 (2015)

    CAS  Google Scholar 

  4. Y. Xu, L. Zhang, J. Li et al., Relationship between Ti/Al ratio and stress-rupture properties in nickel-based superalloy. Mater. Sci. Eng. A 544, 48–53 (2012)

    CAS  Google Scholar 

  5. J.W. Yeh, S.K. Chen, S.J. Lin et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    CAS  Google Scholar 

  6. Y. Zhang, Y.J. Zhou, J.P. Lin et al., Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534–538 (2008)

    CAS  Google Scholar 

  7. A. Dash, A. Paul, S. Sen et al., Recent advances in understanding diffusion in multiprincipal element systems. Annu. Rev. Mater. Res. 52, 383–409 (2022)

    Google Scholar 

  8. Y. Qiu, Y.J. Hu, A. Taylor et al., A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater. 123, 115–124 (2017)

    CAS  Google Scholar 

  9. Z. Fu, W. Chen, H. Wen et al., Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59–71 (2016)

    CAS  Google Scholar 

  10. O.N. Senkov, G.B. Wilks, D.B. Miracle et al., Refractory high-entropy alloys. Intermetallics 18(9), 1758–1765 (2010)

    CAS  Google Scholar 

  11. J. Lužnik, P. Koželj, S. Vrtnik et al., Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy. Phys. Rev. B 92(22), 224201 (2015)

    Google Scholar 

  12. X. Yang, S.Y. Chen, J.D. Cotton et al., Phase stability of low-density, multiprincipal component alloys containing Aluminum, Magnesium, and Lithium. JOM 66(10), 2009–2020 (2014)

    CAS  Google Scholar 

  13. A.L. Greer, Confusion by design. Nature 366(6453), 303–304 (1993)

    Google Scholar 

  14. B. Cantor, I.T.H. Chang, P. Knight et al., Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Google Scholar 

  15. Y. Zhang, T.T. Zuo, Z. Tang et al., Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1–93 (2014)

    Google Scholar 

  16. Y.L. Zhao, T. Yang, Y. Tong et al., Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72–82 (2017)

    CAS  Google Scholar 

  17. X.H. Du, R. Wang, C. Chen et al., Preparation of a light-weight MgCaAlLiCu high-entropy alloy. Key Eng. Mater. 727, 132–135 (2017)

    Google Scholar 

  18. K.M. Youssef, A.J. Zaddach, C. Niu et al., A novel low density high hardness high entropy alloy with close packed single phase nanocrystalline structures. Mater. Res. Lett. 3(2), 95–99 (2015)

    CAS  Google Scholar 

  19. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012)

    CAS  Google Scholar 

  20. L. Tao, M. Sun, Y. Zhou et al., A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144(23), 10582–10590 (2022)

    CAS  Google Scholar 

  21. T. Zuo, M. Zhang, P.K. Liaw et al., Novel high entropy alloys of Fe x Co 1–x NiMnGa with excellent soft magnetic properties. Intermetallics 100, 1–8 (2018)

    CAS  Google Scholar 

  22. H. Ma, L. Zhao, Z.-Y. Hu et al., Near-equiatomic high-entropy decagonal quasicrystal in Al20Si20Mn20Fe20Ga20. Sci. China Mater. 64, 440–447 (2021)

    CAS  Google Scholar 

  23. Y.-L. Chen, C.-W. Tsai, C.-C. Juan et al., Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloy. Compd. 506(1), 210–215 (2010)

    CAS  Google Scholar 

  24. W. Sun, X. Huang, A.A. Luo, Phase formations in low density high entropy alloys. Calphad 56, 19–28 (2017)

    CAS  Google Scholar 

  25. Z. Huang, Y. Dai, Z. Li et al., Investigation on surface morphology and crystalline phase deformation of Al80Li5Mg5Zn5Cu5 high-entropy alloy by ultra-precision cutting. Mater. Des. 186, 108367 (2020)

    CAS  Google Scholar 

  26. H. Li, C. Yang, J. Fu et al., Nano-amorphous—crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy. Sci. China Mater. 65(6), 1671–1678 (2022)

    CAS  Google Scholar 

  27. R. Li, X. Li, J. Ma et al., Sub-grain formation in Al–Li–Mg–Zn–Cu lightweight entropic alloy by ultrasonic hammering. Intermetallics 121, 106780 (2020)

    CAS  Google Scholar 

  28. Z. Li, X. Li, Z. Huang et al., Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature. Acta Mater. 225, 117569 (2022)

    CAS  Google Scholar 

  29. Y. Jia, Y. Jia, S. Wu et al., Novel ultralight-weight complex concentrated alloys with high strength. Materials 12(7), 1136 (2019)

    CAS  Google Scholar 

  30. Y.C. Liao, T.H. Li, P.H. Tsai et al., Designing novel lightweight, high-strength and high-plasticity Ti (AlCrNb)100- medium-entropy alloys. Intermetallics 117, 106673 (2020)

    CAS  Google Scholar 

  31. X. Yan, P.K. Liaw, Y. Zhang, Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. J. Mater. Sci. Technol. 110, 109–116 (2021)

    Google Scholar 

  32. R. Li, Z. Ren, Y. Wu et al., Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy. Mater. Sci. Eng. A 802, 140637 (2021)

    CAS  Google Scholar 

  33. W. Jiang, S. Tao, H. Qiu et al., Precipitation transformation and strengthening mechanism of droplet ejection lightweight medium-entropy AlZnMgCuLi alloy. J. Alloy. Compd. 922, 166152 (2022)

    CAS  Google Scholar 

  34. O.N. Senkov, S.V. Senkova, D.B. Miracle et al., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51–62 (2013)

    CAS  Google Scholar 

  35. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev et al., Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153–155 (2015)

    CAS  Google Scholar 

  36. N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov et al., Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 31(10), 1184–1193 (2015)

    CAS  Google Scholar 

  37. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin et al., Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266–280 (2015)

    CAS  Google Scholar 

  38. M. Esmaily, Y. Qiu, S. Bigdeli et al., High-temperature oxidation behaviour of AlxFeCrCoNi and AlTiVCr compositionally complex alloys. NPJ Mater. Degrad. 4(1), 25 (2020)

    CAS  Google Scholar 

  39. S. Huang, W. Li, O. Eriksson et al., Chemical ordering controlled thermo-elasticity of AlTiVCr1-xNbx high-entropy alloys. Acta Mater. 199, 53–62 (2020)

    CAS  Google Scholar 

  40. Y. Qiu, S. Thomas, M.A. Gibson et al., Corrosion of high entropy alloys. NPJ Mater. Degrad. 1(1), 15 (2017)

    Google Scholar 

  41. X.-W. Qiu, Y.-P. Zhang, L. He et al., Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloy. Compd. 549, 195–199 (2013)

    CAS  Google Scholar 

  42. H. Luo, Z. Li, A.M. Mingers et al., Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131–139 (2018)

    CAS  Google Scholar 

  43. Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: a review. Metals 7(2), 43 (2017)

    Google Scholar 

  44. Y. Qiu, S. Thomas, M.A. Gibson et al., Microstructure and corrosion properties of the low-density single-phase compositionally complex alloy AlTiVCr. Corros. Sci. 133, 386–396 (2018)

    CAS  Google Scholar 

  45. K. Liu, X. Li, J. Wang et al., Investigation of mechanical and corrosion properties of light and high hardness cast AlTiVCrCu0.4 high entropy alloy. Mater. Charact. 200, 112878 (2023)

    CAS  Google Scholar 

  46. M. Li, Q. Chen, X. Cui et al., Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment. J. Alloys Compd. 857, 158278 (2021)

    CAS  Google Scholar 

  47. C. Ji, A. Ma, J. Jiang, Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys. J. Alloy. Compd. 900, 163508 (2022)

    CAS  Google Scholar 

  48. T. Nagase, Y. Iijima, A. Matsugaki et al., Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Mater. Sci. Eng. C 107, 110322 (2020)

    CAS  Google Scholar 

  49. A. Motallebzadeh, N.S. Peighambardoust, S. Sheikh et al., Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti15ZrTa05Hf05Nb05 refractory high-entropy alloys for biomedical applications. Intermetallics 113, 106572 (2019)

    CAS  Google Scholar 

  50. X.Q. Gao, K. Zhao, H.B. Ke et al., High mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 357(21), 3557–3560 (2011)

    CAS  Google Scholar 

  51. H.F. Li, X.H. Xie, K. Zhao et al., In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater 9(10), 8561–8573 (2013)

    CAS  Google Scholar 

  52. S. Kumar, A. Jain, T. Ichikawa et al., Development of vanadium based hydrogen storage material: a review. Renew. Sustain. Energy Rev. 72, 791–800 (2017)

    CAS  Google Scholar 

  53. M. Sahlberg, D. Karlsson, C. Zlotea et al., Superior hydrogen storage in high entropy alloys. Sci. Rep. 6(1), 1–6 (2016)

    Google Scholar 

  54. R.B. Strozi, D.R. Leiva, J. Huot et al., Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys. Int. J. Hydrog. Energy 46(2), 2351–2361 (2021)

    CAS  Google Scholar 

  55. J. Montero, G. Ek, M. Sahlberg et al., Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy. Scr. Mater. 194, 113699 (2021)

    CAS  Google Scholar 

  56. H. El Shayeb, F. Abd El Wahab, S.Z. El Abedin, Electrochemical behaviour of Al, Al–Sn, Al–Zn and Al–Zn–Sn alloys in chloride solutions containing stannous ions. Corros. Sci. 43(4), 655–669 (2001)

    CAS  Google Scholar 

  57. W. Wilhelmsen, T. Arnesen, Ø. Hasvold et al., The electrochemical behaviour of Al-In alloys in alkaline electrolytes. Electrochim. Acta 36(1), 79–85 (1991)

    CAS  Google Scholar 

  58. Y. Xie, X. Meng, D. Mao et al., Deformation-driven modification of Al-Li-Mg-Zn-Cu high-alloy aluminum as anodes for primary aluminum-air batteries. Scr. Mater. 212, 114551 (2022)

    CAS  Google Scholar 

  59. Y. Zhang, T. Zuo, Y. Cheng et al., High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 3(1), 1455 (2013)

    Google Scholar 

  60. T. Zuo, R. Li, X. Ren et al., Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 60–68 (2014)

    CAS  Google Scholar 

  61. T. Zuo, M.C. Gao, L. Ouyang et al., Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10–18 (2017)

    CAS  Google Scholar 

  62. T. Borkar, V. Chaudhary, B. Gwalani et al., A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi. Adv. Eng. Mater. 19(8), 1700048 (2017)

    Google Scholar 

  63. M.S. Lucas, L. Mauger, J.A. Muñoz et al., Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109(7), 07E307 (2011)

    Google Scholar 

  64. R.K. Mishra, P.P. Sahay, R.R. Shahi, Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. J. Mater. Sci. 54(5), 4433–4443 (2018)

    Google Scholar 

  65. C. Zhao, J. Li, Y. Liu et al., Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation. J. Mater. Sci. Technol. 86, 117–126 (2021)

    CAS  Google Scholar 

  66. R.K. Mishra, R.R. Shahi, A novel low-density semi-hard magnetic Al20Fe20Mg20Ni20Ti20 high entropy alloy. J. Magn. Magn. Mater. 516, 167342 (2020)

    CAS  Google Scholar 

  67. O.N. Senkov, D.B. Miracle, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloy. Compd. 658, 603–607 (2016)

    CAS  Google Scholar 

  68. R. Li, J.C. Gao, K. Fan, Study to microstructure and mechanical properties of Mg containing high entropy alloys. Mater. Sci. Forum 650, 265–271 (2010)

    CAS  Google Scholar 

  69. J.M. Sanchez, I. Vicario, J. Albizuri et al., Design, microstructure and mechanical properties of cast medium entropy Aluminium alloys. Sci. Rep. 9(1), 6792 (2019)

    Google Scholar 

  70. E.J. Baek, T.Y. Ahn, J.G. Jung et al., Effects of ultrasonic melt treatment and solution treatment on the microstructure and mechanical properties of low-density multicomponent Al70Mg10Si10Cu5Zn5 alloy. J. Alloy. Compd. 696, 450–459 (2017)

    CAS  Google Scholar 

  71. L. Shao, T. Zhang, L. Li et al., A low-cost lightweight entropic alloy with high strength. J. Mater. Eng. Perform. 27(12), 6648–6656 (2018)

    CAS  Google Scholar 

  72. P. Chauhan, S. Yebaji, V.N. Nadakuduru et al., Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. J. Alloy. Compd. 820, 153367 (2020)

    CAS  Google Scholar 

  73. K. Tseng, Y. Yang, C. Juan et al., A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci. CHINA Technol. Sci. 61(2), 184–188 (2018)

    CAS  Google Scholar 

  74. A. Sharma, M.C. Oh, B. Ahn, Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Mater. Sci. Eng. A 797, 140066 (2020)

    CAS  Google Scholar 

  75. M.J. Chae, A. Sharma, M.C. Oh et al., Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio pocessed by powder metallurgy. Met. Mater. Int. 27, 629–638 (2021)

    CAS  Google Scholar 

  76. R. Feng, M.C. Gao, C. Zhang et al., Phase stability and transformation in a light-weight high-entropy alloy. Acta Mater. 146, 280–293 (2018)

    CAS  Google Scholar 

  77. R. Feng, M. Gao, C. Lee et al., Design of light-weight high-entropy alloys. Entropy 18(9), 333 (2016)

    Google Scholar 

  78. V.H. Hammond, M.A. Atwater, K.A. Darling et al., Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying. JOM 66(10), 2021–2029 (2014)

    CAS  Google Scholar 

  79. N. Singh, Y. Shadangi, V. Shivam et al., MgAlSiCrFeNi low-density high entropy alloy processed by mechanical alloying and spark plasma sintering: Effect on phase evolution and thermal stability. J. Alloy. Compd. 875, 159923 (2021)

    CAS  Google Scholar 

  80. Y. Xie, X. Meng, R. Zang et al., Deformation-driven modification towards strength-ductility enhancement in Al–Li–Mg–Zn–Cu lightweight high-entropy alloys. Mater. Sci. Eng.: A 830, 142332 (2022)

    CAS  Google Scholar 

Download references

Acknowledgments

Yong Zhang acknowledges supports from National Natural Science Foundation of China (No. 52273280) and Creative Research Groups of China (No. 51921001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Geng, G. & Zhang, Y. Recent progress in lightweight high-entropy alloys. MRS Communications 13, 740–753 (2023). https://doi.org/10.1557/s43579-023-00405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00405-7

Keywords

Navigation