Skip to main content
Log in

The mechanical properties of nanoceramic CeO2 under high pressure

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Investigating the mechanical properties of nanoceramic has been an important topic in fundamental science and industrial application. In this study, pressure gradient approach method is introduced. The yield strength of nano-CeO2 increases with decreasing grain sizes and increasing pressure, consistent with the Hall-Patch effect. Three cycle experiments show that the decrease in yield stress after cycling is correlated with the decrease in sample thickness. For comparison, the yield strength of 10 nm nickel was also measured. Transmission electron microscope measurement revealed the quenched the deformation of coarse-grained CeO2 is dominated by cracks, while small amount of dislocations exist in CeO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request. And all data can be shared openly.

References

  1. L. Mishnaevsky, K. Branner, H. Nørgaard Petersen, J. Beauson, M. McGugan, B.F. Sørensen, Materials for wind turbine blades: an overview. Materials 10(11), 1285 (2017). https://doi.org/10.3390/ma10111285

    Article  CAS  Google Scholar 

  2. X. Shen, J. Lian, Z. Jiang, Q. Jiang, High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Mater. Sci. Eng., A 487(1–2), 410–416 (2008). https://doi.org/10.1016/j.msea.2007.10.018

    Article  CAS  Google Scholar 

  3. G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 54(7), 1759–1766 (2006). https://doi.org/10.1016/j.actamat.2005.11.044

    Article  CAS  Google Scholar 

  4. C. Bin, Exploring nanomechanics with high-pressure techniques. Matter Radiat. Extrem. 5(6), 068104 (2020). https://doi.org/10.1063/5.0032600

    Article  Google Scholar 

  5. V.I. Levitas, M. Javanbakht, Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6(1), 162–166 (2014). https://doi.org/10.1039/c3nr05044k

    Article  CAS  Google Scholar 

  6. X. Zhou, Z. Feng, L. Zhu, Xu. Jianing, L. Miyagi, H. Dong, H. Sheng, Y. Wang, Q. Li, Y. Ma, H. Zhang, J. Yan, N. Tamura, M. Kunz, K. Lutker, T. Huang, D.A. Hughes, X. Huang, B. Chen, High-pressure strengthening in ultrafine-grained metals. Nature 579(7797), 67–72 (2020). https://doi.org/10.1038/s41586-020-2036-z

    Article  CAS  Google Scholar 

  7. H. Duanwei, T.S. Duffy, X-ray diffraction study of the static strength of tungsten to 69 GPa. Phys. Rev. B 73(13), 4106 (2006). https://doi.org/10.1103/physrevb.73.134106

    Article  Google Scholar 

  8. J. Qian, C. Pantea, J. Zhang, L.L. Daemen, Y. Wang, Yield strength of α-silicon nitride at high pressure and high temperature. J. Am. Ceram. Soc. (2005). https://doi.org/10.1111/j.1551-2916.2005.00163.x

    Article  Google Scholar 

  9. H. Zhang, H. Xiao, Z. Zhang, P. Zhang, Y. Li, Y. Ma, Y. Kuang, Y. Zhao, Z. Chai, Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol. 45(8), 3725–3730 (2011). https://doi.org/10.1021/es103309n

    Article  CAS  Google Scholar 

  10. L. Shuna, Z. Huaqing, Q. Zhangfeng, Morphologic effects of nano CeO2–TiO2 on the performance of Au/CeO2–TiO2 catalysts in low-temperature CO oxidation. Appl. Catal. B Environ. 144, 498–506 (2014). https://doi.org/10.1016/j.apcatb.2013.07.049

    Article  CAS  Google Scholar 

  11. M. Li, S. Zhang, H. Li, Y. He, J.H. Yoon, T.Y. Cho, Effect of nano-CeO2 on cobalt-based alloy laser coatings. J. Mater. Process. Technol. 202(1–3), 107–111 (2008). https://doi.org/10.1016/j.jmatprotec.2007.08.050

    Article  CAS  Google Scholar 

  12. A. Pmk, B. Km, A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater. Renew. Energy 162, 662–676 (2020). https://doi.org/10.1016/j.renene.2020.08.122

    Article  CAS  Google Scholar 

  13. Y. Shen, P.K. Sahoo, Y. Pan, A study of nanocomposite coatings on the surface of ship exhaust pipe. Surf. Rev. Lett. 24(08), 1750112 (2017). https://doi.org/10.1142/S0218625X17501128

    Article  CAS  Google Scholar 

  14. M. Srivastava, V.K.W. Grips, K.S. Rajam, Electrodeposition of Ni–Co composites containing nano-CeO2 and their structure, properties. Appl. Surf. Sci. 257(3), 717–722 (2010). https://doi.org/10.1016/j.apsusc.2010.07.046

    Article  CAS  Google Scholar 

  15. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.5b00603

    Article  Google Scholar 

  16. Y. Zhang, S. Zhao, J. Feng, S. Song, W. Shi, D. Wang, H. Zhang, Unraveling the physical chemistry and materials science of CeO2’-based nanostructures. Chem. 7(8), 2022–2059 (2021). https://doi.org/10.1016/j.chempr.2021.02.015

    Article  CAS  Google Scholar 

  17. Q. Jing, B. Yan, W. Qiang, F. Jing, J. Sheng, Yield strength of molybdenum at high pressures. Rev. Sci. Instrum. 78(7), 073906 (2007). https://doi.org/10.1063/1.2758549

    Article  CAS  Google Scholar 

  18. C. Meade, R. Jeanloz, Yield strength of MgO to 40 GPa. J. Geophys. Res. Solid Earth 93(B4), 3261–3269 (1988). https://doi.org/10.1029/jb093ib04p03261

    Article  CAS  Google Scholar 

  19. C. Meade, R. Jeanloz, Yield strength of Al 2 O 3 at high pressures. Phys. Rev. B 42(4), 2532 (1990). https://doi.org/10.1103/PhysRevB.42.2532

    Article  CAS  Google Scholar 

  20. W. Yang, X. Huang, R. Harder, J.N. Clark, I.K. Robinson, H.K. Mao, Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat. Commun. 4(1), 1680 (2013). https://doi.org/10.1038/ncomms2661

    Article  CAS  Google Scholar 

  21. Y. Shen, R.S. Kumar, M. Pravica, M.F. Nicol, Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells. Rev. Sci. Instrum. 75(11), 4450–4454 (2004). https://doi.org/10.1063/1.1786355

    Article  CAS  Google Scholar 

  22. A. Dewaele, G. Fiquet, P. Gillet, Temperature and pressure distribution in the laser-heated diamond–anvil cell. Rev. Sci. Instrum. 69(6), 2421–2426 (1998). https://doi.org/10.1063/1.1148970

    Article  CAS  Google Scholar 

  23. Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall-Petch effect—a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61(8), 1–18 (2016). https://doi.org/10.1080/09506608.2016.1191808

    Article  CAS  Google Scholar 

  24. J.J. Brown, A.I. Baca, K.A. Bertness, D.A. Dikin, R.S. Ruoff, V.M. Bright, Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages. Sens. Actuators, A 166(2), 177–186 (2011). https://doi.org/10.1016/j.sna.2010.04.002

    Article  CAS  Google Scholar 

  25. A. Schweiger, I. Zimmermann, A new approach for the measurement of the tensile strength of powders. Powder Technol. 101(1), 7–15 (1999). https://doi.org/10.1016/S0032-5910(98)00117-X

    Article  CAS  Google Scholar 

  26. R. Berenbaum, I. Brodie, Measurement of the tensile strength of brittle materials. Br. J. Appl. Phys 10(6), 281 (1959). https://doi.org/10.1088/0508-3443/10/6/307

    Article  Google Scholar 

  27. A. Navarro, E.R. de Los Rios, An alternative model of the blocking of dislocations at grain boundaries. Philos. Mag. A 57(1), 37–42 (1988). https://doi.org/10.1080/01418618808204497

    Article  Google Scholar 

  28. T.B. Britton, A.J. Wilkinson, Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band. Acta Mater. 60(16), 5773–5782 (2012). https://doi.org/10.1016/j.actamat.2012.07.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Center for High Pressure Science and Technology Advanced Research (HPSTAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yuan, M., Li, H. et al. The mechanical properties of nanoceramic CeO2 under high pressure. MRS Communications 13, 1125–1130 (2023). https://doi.org/10.1557/s43579-023-00401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00401-x

Keywords

Navigation