Skip to main content
Log in

Construction of single-ion conducting polymeric protective layer for high-charging rate Li-metal batteries

  • MRS 50th Anniversary Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A single-ion conducting polymetric artificial solid electrolyte interphase (SICP-ASEI) is rationally designed to improve the cycling performance of Li-metal batteries (LMBs) under high charging rate. The SICP with high cationic transport number (0.84) is obtained by polymerization of LiSTFSI and polyethylene (ethylene glycol) methacrylate following by chemical crosslinking. The LMBs with SICP-ASEI can achieve improved energy efficiency and prolonged cell lifetime, including (i) high cycling stability (over 1000 h cycling) and limited polarization voltage (< 95 mV at ± 1 mA cm−2) on symmetrical cells and (ii) high-capacity retention of 84.3% after 200 cycles at 1 C and over 102 mAh g−1 at high charging rate of 2 C on full cell coupled with high-mass-loading cathode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419 (2010)

    Article  CAS  Google Scholar 

  2. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  3. A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020)

    Article  CAS  Google Scholar 

  4. T.A. Stuart, A. Hande, HEV battery heating using AC currents. J. Power Sources 129, 368 (2004)

    Article  CAS  Google Scholar 

  5. G. Yang, Y. Song, Q. Wang, L. Zhang, L. Deng, Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 190, 108563 (2020)

    Article  CAS  Google Scholar 

  6. W.Z. Huang, C.Z. Zhao, P. Wu, H. Yuan, W.E. Feng, Z.Y. Liu, Y. Lu, S. Sun, Z.H. Fu, J.K. Hu, S.J. Yang, J.Q. Huang, Q. Zhang, Anode-free solid-state lithium batteries: a review. Adv. Energy Mater. 12, 2201044 (2022)

    Article  CAS  Google Scholar 

  7. J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J. Yang, X.Q. Yang, J.G. Zhang, Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180 (2019)

    Article  CAS  Google Scholar 

  8. Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119 (2021)

    Article  CAS  Google Scholar 

  9. Q. Huang, S. Ni, M. Jiao, X. Zhong, G. Zhou, H.M. Cheng, Aligned carbon-based electrodes for fast-charging batteries: a review. Small 17, e2007676 (2021)

    Article  Google Scholar 

  10. J. Tan, A. Cannon, E. Ryan, Simulating dendrite growth in lithium batteries under cycling conditions. J. Power Sources 463, 228187 (2020)

    Article  CAS  Google Scholar 

  11. Y. Zhong, J. Zhang, S. Wang, D. Han, M. Xiao, Y. Meng, Effective suppression of lithium dendrite growth using fluorinated polysulfonamide-containing single-ion conducting polymer electrolytes. Mater. Adv. 1, 873 (2020)

    Article  CAS  Google Scholar 

  12. G. Bieker, M. Winter, P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670 (2015)

    Article  CAS  Google Scholar 

  13. X. Shen, R. Zhang, P. Shi, X. Chen, Q. Zhang, How does external pressure shape Li dendrites in Li metal batteries? Adv. Energy Mater. 11, 2003416 (2021)

    Article  CAS  Google Scholar 

  14. S. Xu, B. Peng, X. Pang, F. Huang, Anionic activity in fast-charging batteries: recent advances, prospects, and challenges. ACS Mater. Lett. 4, 2195 (2022)

    Article  CAS  Google Scholar 

  15. Y. Jie, X. Ren, R. Cao, W. Cai, S. Jiao, Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 30, 1910777 (2020)

    Article  CAS  Google Scholar 

  16. S. Gao, F. Sun, N. Liu, H. Yang, P.F. Cao, Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries—a review. Mater. Today 40, 140 (2020)

    Article  CAS  Google Scholar 

  17. M. Wan, X. Duan, H. Cui, J. Du, L. Fu, Z. Chen, Z. Lu, G. Li, Y. Li, E. Mao, L. Wang, Y. Sun, Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Mater. 46, 563 (2022)

    Article  Google Scholar 

  18. Z. Yu, D.G. Mackanic, W. Michaels, M. Lee, A. Pei, D. Feng, Q. Zhang, Y. Tsao, C.V. Amanchukwu, X. Yan, H. Wang, S. Chen, K. Liu, J. Kang, J. Qin, Y. Cui, Z. Bao, A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761 (2019)

    Article  CAS  Google Scholar 

  19. N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li, C.J. Li, L.J. Wan, R. Wen, Y.G. Guo, A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505 (2018)

    Article  CAS  Google Scholar 

  20. X. Shan, S. Zhao, M. Ma, Y. Pan, Z. Xiao, B. Li, A.P. Sokolov, M. Tian, H. Yang, P.F. Cao, Single-ion conducting polymeric protective interlayer for stable solid lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 56110 (2022)

    Article  CAS  Google Scholar 

  21. Z. Tu, S. Choudhury, M.J. Zachman, S. Wei, K. Zhang, L.F. Kourkoutis, L.A. Archer, Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1, 394 (2017)

    Article  CAS  Google Scholar 

  22. R. Xu, Y. Xiao, R. Zhang, X. Cheng, C. Zhao, X. Zhang, C. Yan, Q. Zhang, J. Huang, Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 31, 1808392 (2019)

    Article  Google Scholar 

  23. C. Cao, Y. Li, Y. Feng, P. Long, H. An, C. Qin, J. Han, S. Li, W. Feng, A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J. Mater. Chem. A 5, 22519 (2017)

    Article  CAS  Google Scholar 

  24. S. Zhao, S. Song, Y. Wang, J. Keum, J. Zhu, Y. He, A.P. Sokolov, P.F. Cao, Unraveling the role of neutral units for single-ion conducting polymer electrolytes. ACS Appl. Mater. Interfaces 13, 51525 (2021)

    Article  CAS  Google Scholar 

  25. J. Zhu, Z. Zhang, S. Zhao, A.S. Westover, I. Belharouak, P.F. Cao, Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: design, performance, and challenges. Adv. Energy Mater. 11, 2003836 (2021)

    Article  CAS  Google Scholar 

  26. F. Sun, Z. Li, S. Gao, Y. He, J. Luo, X. Zhao, D. Yang, T. Gao, H. Yang, P.F. Cao, Self-healable, highly stretchable, ionic conducting polymers as efficient protecting layers for stable lithium-metal electrodes. ACS Appl. Mater. Interfaces 14, 26014 (2022)

    Article  CAS  Google Scholar 

  27. S. Gao, Z. Li, Z. Zhang, B. Li, X.C. Chen, G. Yang, T. Saito, M. Tian, H. Yang, P.F. Cao, Constructing a multi-functional polymer network for ultra-stable and safe Li-metal batteries. Energy Storage Mater. 55, 214 (2023)

    Article  Google Scholar 

  28. S. Gao, A. Cannon, F. Sun, Y. Pan, D. Yang, S. Ge, N. Liu, A.P. Sokolov, E. Ryan, H. Yang, P.F. Cao, Glass-fiber-reinforced polymeric film as an efficient protecting layer for stable Li metal electrodes. Cell Rep. Phys. Sci. 2, 100534 (2021)

    Article  CAS  Google Scholar 

  29. R. Meziane, J.P. Bonnet, M. Courty, K. Djellab, M. Armand, Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14 (2011)

    Article  CAS  Google Scholar 

  30. S. Feng, D. Shi, F. Liu, L. Zheng, J. Nie, W. Feng, X. Huang, M. Armand, Z. Zhou, Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta 93, 254 (2013)

    Article  CAS  Google Scholar 

  31. S. Zhao, Y. Zhang, H. Pham, J.M.Y. Carrillo, B.G. Sumpter, J. Nanda, N.J. Dudney, T. Saito, A.P. Sokolov, P.F. Cao, Improved single-ion conductivity of polymer electrolyte via accelerated segmental dynamics. ACS Appl. Energy Mater. 3, 12540 (2020)

    Article  CAS  Google Scholar 

  32. X. Shan, M. Morey, Z. Li, S. Zhao, S. Song, Z. Xiao, H. Feng, S. Gao, G. Li, A.P. Sokolov, E. Ryan, K. Xu, M. Tian, Y. He, H. Yang, P.F. Cao, A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries. ACS Energy Lett. 7, 4342 (2022)

    Article  CAS  Google Scholar 

  33. S. Gao, M. Zhang, C. Gainaru, A.P. Sokolov, H. Yang, P.F. Cao, Plastic crystal in rubbery matrix for light and safe batteries. Matter 5, 2457 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Fundamental Research Funds for the Central Universities (buctrc202222), the Natural Science Foundation of China (21421001), the Natural Science Foundation of Tianjin, China (18JCZDJC31400), and the MOE Innovation Team (IRT13022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huabin Yang or Peng-Fei Cao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pengfei Cao was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 614 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Jin, S., Zhao, S. et al. Construction of single-ion conducting polymeric protective layer for high-charging rate Li-metal batteries. MRS Communications 13, 848–853 (2023). https://doi.org/10.1557/s43579-023-00392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00392-9

Keywords

Navigation