Skip to main content
Log in

Magnetofunctional response of AlFe2B2 powders synthesized in open air via molten salt shielded/sintering method

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Predominantly single-phase AlFe2B2 powders were synthesized by a molten salt sintered/sintering (MS3) method wherein a green compact comprising of Al, Fe and B powders encapsulated in a KBr salt was heat treated at 1000°C for 12 h in open air. Results reveal that the magnetofunctional properties of AlFe2B2 powders synthesized via the novel MS3 method is comparable to that of powders produced via melt-based or powder metallurgy methods that have been previously reported in the literature. Since no inert environment or post-fabrication annealing or acid treatments is required, it is construed that the MS3 processing scheme is the most cost-effective and energy-efficient method to synthesize AlFe2B2 powders to date.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4 

Similar content being viewed by others

Data availability

Raw data pertaining to graphs and tables presented in this work may be provided upon request.

References

  1. S. Kota, M. Sokol, M.W. Barsoum, Int. Mater. Rev. 65, 226–255 (2020)

    Article  CAS  Google Scholar 

  2. T. Ma, P. Zhu, X. Yu, Chin. Phys. B (2021). https://doi.org/10.1088/1674-1056/ac1925

    Article  Google Scholar 

  3. L.E. Pangilinan, S. Hu, S.G. Hamilton, S.H. Tolbert, R.B. Kaner, Acc Mater. Res. 3, 100–109 (2022)

    Article  CAS  Google Scholar 

  4. B.P.T. Fokwa, Eur. J. Inorg. Chem. 2010, 3075–3092 (2010)

    Article  Google Scholar 

  5. B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Prog. Mater. Sci. 111, 100651 (2020)

    Article  CAS  Google Scholar 

  6. M. Dey, S. Javaid, D. Clifford, V. Sharma, R. Barua, S. Gupta, J. Mater. Sci. 57, 2436–2454 (2022)

    Article  CAS  Google Scholar 

  7. R. Barua, B.T. Lejeune, L. Ke, G. Hadjipanayis, E.M. Levin, R.W. McCallum, M.J. Kramer, L.H. Lewis, J. Alloys Compd. 745, 505–512 (2018)

    Article  CAS  Google Scholar 

  8. B.T. Lejeune, X. Du, R. Barua, J.C. Zhao, L.H. Lewis, Materialia (Oxf.) 1, 150–154 (2018)

    Article  CAS  Google Scholar 

  9. B.T. Lejeune, R. Barua, E. Simsek, R.W. McCallum, R.T. Ott, M.J. Kramer, L.H. Lewis, Materialia (Oxf.) 16, 101071 (2021)

    Article  CAS  Google Scholar 

  10. S. Hirt, F. Yuan, Y. Mozharivskyj, H. Hillebrecht, Inorg. Chem. 55, 9677–9684 (2016)

    Article  CAS  Google Scholar 

  11. P. Chai, S.A. Stoian, X. Tan, P.A. Dube, M. Shatruk, J. Solid State Chem. 224, 52–61 (2015)

    Article  CAS  Google Scholar 

  12. Q. Du, G. Chen, W. Yang, Z. Song, M. Hua, H. Du, C. Wang, S. Liu, J. Han, Y. Zhang, J. Yang, Jpn. J. Appl. Phys. (2015). https://doi.org/10.7567/JJAP.54.053003

    Article  Google Scholar 

  13. Q. Du, G. Chen, W. Yang, J. Wei, M. Hua, H. Du, C. Wang, S. Liu, J. Han, Y. Zhang, J. Yang, J. Phys. D Appl. Phys. (2015). https://doi.org/10.1088/0022-3727/48/33/335001

    Article  Google Scholar 

  14. L.H. Lewis, R. Barua, B. Lejeune, J. Alloys Compd. 650, 482–488 (2015)

    Article  CAS  Google Scholar 

  15. M. Ade, H. Hillebrecht, Inorg. Chem. 54, 6122–6135 (2015)

    Article  CAS  Google Scholar 

  16. M. Elmassalami, D.D.S. Oliveira, H. Takeya, J. Magn. Magn. Mater. 323, 2133–2136 (2011)

    Article  CAS  Google Scholar 

  17. J. Cedervall, M.S. Andersson, T. Sarkar, E.K. Delczeg-Czirjak, L. Bergqvist, T.C. Hansen, P. Beran, P. Nordblad, M. Sahlberg, J. Alloys Compd. 664, 784–791 (2016)

    Article  CAS  Google Scholar 

  18. T. Ali, M.N. Khan, E. Ahmed, A. Ali, Prog. Nat. Sci.: Mater. Int. 27, 251–256 (2017)

    Article  CAS  Google Scholar 

  19. D.K. Mann, J. Xu, N.E. Mordvinova, V. Yannello, Y. Ziouani, N. González-Ballesteros, J.P.S. Sousa, O.I. Lebedev, Y.V. Kolen’ko, M. Shatruk, Chem. Sci. 10, 2796–2804 (2019)

    Article  CAS  Google Scholar 

  20. D.K. Mann, Y.X. Wang, J.D. Marks, G.F. Strouse, M. Shatruk, Inorg. Chem. 59, 12625–12631 (2020)

    Article  CAS  Google Scholar 

  21. E.M. Levin, B.A. Jensen, R. Barua, B. Lejeune, A. Howard, R.W. McCallum, M.J. Kramer, L.H. Lewis, Phys. Rev. Materials 2, 034403 (2018). https://doi.org/10.1103/PhysRevMaterials.2.034403

  22. R. Barua, B.T. Lejeune, B.A. Jensen, L. Ke, R.W. McCallum, M.J. Kramer, L.H. Lewis, J. Alloys Compd. 777, 1030–1038 (2019)

    Article  CAS  Google Scholar 

  23. X. Tan, P. Chai, C.M. Thompson, M. Shatruk, J. Am. Chem. Soc. 135, 9553–9557 (2013)

    Article  CAS  Google Scholar 

  24. J. Cedervall, L. Häggström, T. Ericsson, M. Sahlberg, Hyperfine Interact. (2016). https://doi.org/10.1007/s10751-016-1223-7

    Article  Google Scholar 

  25. J.W. Lee, M.S. Song, K.K. Cho, B.K. Cho, C. Nam, J. Korean Phys. Soc. 73, 1555–1560 (2018)

    Article  CAS  Google Scholar 

  26. S. Wang, P. Liu, J. Chen, W. Cui, AIP Adv. 12, 1–4 (2022)

    Google Scholar 

  27. D. Sivaprahasam, A. Kumar, B. Jayachandran, R. Gopalan, 1–5 (2022). https://doi.org/10.48550/arXiv.2212.01193

  28. T.N. Lamichhane, L. Xiang, Q. Lin, T. Pandey, D.S. Parker, T.H. Kim, L. Zhou, M.J. Kramer, S.L. Bud’Ko, P.C. Canfield, Phys. Rev. Mater. 2, 1–12 (2018)

    Google Scholar 

  29. K. Han, M. Li, M. Gao, X. Wang, J. Huo, J.Q. Wang, J. Alloys Compd. 908, 164663 (2022)

    Article  CAS  Google Scholar 

  30. S.P. Bennett, S. Kota, H. ElBidweihy, J.F. Parker, L.A. Hanner, P. Finkel, M.W. Barsoum, Scr. Mater. 188, 244–248 (2020)

    Article  CAS  Google Scholar 

  31. V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86, 565–575 (1999)

    Article  CAS  Google Scholar 

  32. L.A. Hanner, S. Kota, M.W. Barsoum, Mater. Res. Lett. 9, 323–328 (2021)

    Article  CAS  Google Scholar 

  33. B.T. Lejeune, D.L. Schlagel, B.A. Jensen, T.A. Lograsso, M.J. Kramer, L.H. Lewis, Phys. Rev. Mater. 3, 1–22 (2019)

    Google Scholar 

  34. M.P. Browne, E. Redondo, M. Pumera, Chem. Rev. 120, 2783–2810 (2020)

    Article  CAS  Google Scholar 

  35. A. Funk, J. Freudenberger, A. Waske, M. Krautz, Mater. Today Energy 9, 223–228 (2018)

    Article  Google Scholar 

  36. V. Sharma, L. Balderson, R. Heo, O. Bishop, C.S.M. Hunt, E.E. Carpenter, R.L. Hadimani, H. Zhao, R. Barua, J. Alloys Compd. 920, 165891 (2022)

    Article  CAS  Google Scholar 

  37. Zhao H et al. 3D printed magnetocaloric devices with controlled microchannels and magnetic anisotropy and methods of making the same (71) Applicant : Virginia commonwealth” (2021).

Download references

Acknowledgments

The authors would like to thank VCU’s College of Engineering and ND NASA EPSCOR for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Barua.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest/competing interests related to the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Dey, M., Duong, A. et al. Magnetofunctional response of AlFe2B2 powders synthesized in open air via molten salt shielded/sintering method. MRS Communications 13, 574–580 (2023). https://doi.org/10.1557/s43579-023-00385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00385-8

Keywords

Navigation