Skip to main content

Advertisement

Log in

3D-printed energy-absorbing structures using instability and air frictional and suction dissipation

  • Early Career Materials Researcher Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Energy-absorbing materials are widely used as protection for crash mitigation and concussive head impacts reduction. A structural design can significantly enhance energy absorption in different ways, including plastic deformation and bi-stability. Here, 3D-printed energy-absorbing cells of open and capped double frustum structures are characterized via finite element simulations and compressive experiments. The designs demonstrated a buckling instability under compression, achieving 47 times higher specific energy absorption at their critical stress compared with a solid material. For capped structures, strain rate effect on critical stresses is due to air frictional dissipation. The open structures showed beneficial energy hysteresis due to suction in the cyclic tests.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request. The online version contains supplementary information available.

References

  1. J.A. Langlois, W. Rutland-Brown, M.M. Wald, J. Head Trauma Rehabil. 21, 375–378 (2006)

    Article  Google Scholar 

  2. P.J.A. Dean, A. Sterr, Front. Hum. Neurosci. (2013). https://doi.org/10.3389/fnhum.2013.00030

    Article  Google Scholar 

  3. C. Konrad, A.J. Geburek, F. Rist, H. Blumenroth, B. Fischer, I. Husstedt, V. Arolt, H. Schiffbauer, H. Lohmann, Psychol. Med. 41, 1197–1211 (2011)

    Article  CAS  Google Scholar 

  4. T.D. Stein, V.E. Alvarez, A.C. McKee, Curr. Pain Headache Rep. 19, 47 (2015)

    Article  Google Scholar 

  5. L. Mainwaring, K.M. Ferdinand Pennock, S. Mylabathula, B.Z. Alavie, Int. J. Psychophysiol. 132, 39–54 (2018)

    Article  Google Scholar 

  6. J.J. Andrew, H. Alhashmi, A. Schiffer, S. Kumar, V.S. Deshpande, Mater. Des. 208, 109863 (2021)

    Article  CAS  Google Scholar 

  7. G. Li, S. Ferdousi, G. Tejeda-Godinez, Y. Jiang, MRS Commun. 12, 982–987 (2022)

    Article  Google Scholar 

  8. P.K. Archakam, S. Muthuswamy, J. Vib. Eng. Technol. 9, 1635–1656 (2021)

    Article  Google Scholar 

  9. F. Tarlochan, Materials (Basel). (2021). https://doi.org/10.3390/ma14164731

    Article  Google Scholar 

  10. A. Riccio, M. Madonna, C. Palumbo, A. Sellitto, Heliyon. 8, e11695 (2022)

    Article  CAS  Google Scholar 

  11. X. Yang, J. Ma, D. Wen, J. Yang, Prog. Aerosp. Sci. 114, 100618 (2020)

    Article  Google Scholar 

  12. S. Shukla, B.K. Behera, Compos. Struct. 290, 115530 (2022)

    Article  Google Scholar 

  13. S. Shan, S.H. Kang, J.R. Raney, P. Wang, L. Fang, F. Candido, J.A. Lewis, K. Bertoldi, Adv. Mater. 27, 4296–4301 (2015)

    Article  CAS  Google Scholar 

  14. Y. Cao, M. Derakhshani, Y. Fang, G. Huang, C. Cao, Adv. Funct. Mater. 31, 1–23 (2021)

    CAS  Google Scholar 

  15. C. Winkelmann, S.S. Kim, V. La Saponara, Compos. Struct. 93, 171–178 (2010)

    Article  Google Scholar 

  16. A. Montalbano, G.M. Fadel, G. Li, Mech. Based Des. Struct. Mach. 51, 1368–1386 (2020)

    Article  Google Scholar 

  17. J. Li, Y. Yang, H. Jiang, Y. Wang, Y. Chen, S. Jiang, J.M. Wu, G. Zhang, Compos. Part B Eng. 232, 109617 (2022)

    Article  CAS  Google Scholar 

  18. S.D. Papka, S. Kyriakides, J. Mech. Phys. Solids. 42, 1499–1532 (1994)

    Article  CAS  Google Scholar 

  19. H.G. Tattersall, G. Tappin, J. Mater. Sci. 1, 296–301 (1966)

    Article  Google Scholar 

  20. J. Li, Z. Zhu, L. Fang, S. Guo, U. Erturun, Z. Zhu, J.E. West, S. Ghosh, S.H. Kang, Nanoscale 9, 14215–14228 (2017)

    Article  CAS  Google Scholar 

  21. A.B.M. Supian, S.M. Sapuan, M.Y.M. Zuhri, E.S. Zainudin, H.H. Ya, Def. Technol. 14, 291–305 (2018)

    Article  Google Scholar 

  22. M. Bodaghi, A. Serjouei, A. Zolfagharian, M. Fotouhi, H. Rahman, D. Durand, Int. J. Mech. Sci. 173, 105451 (2020)

    Article  Google Scholar 

  23. Y. Wu, J. Fang, C. Wu, C. Li, G. Sun, Q. Li, Int. J. Mech. Sci. 246, 108102 (2023)

    Article  Google Scholar 

  24. F. Rahimidehgolan, W. Altenhof, Compos. Part B Eng. 253, 110513 (2023)

    Article  CAS  Google Scholar 

  25. C. Rodrigo, S. Xu, Y. Durandet, D. Fraser, D. Ruan, Eng. Struct. 284, 115909 (2023)

    Article  Google Scholar 

  26. M.N. Islam, Y. Jiang, ACS Sustain. Chem. Eng. 10, 7818–7824 (2022)

    Article  CAS  Google Scholar 

  27. G. Belingardi, R. Montanini, M. Avalle, Int. J. Impact Eng. 25, 455–472 (2001)

    Article  Google Scholar 

  28. L. Sun, R.F. Gibson, F. Gordaninejad, J. Suhr, Compos. Sci. Technol. 69, 2392–2409 (2009)

    Article  CAS  Google Scholar 

  29. F. Xu, X. Zhang, H. Zhang, Eng. Struct. 171, 309–325 (2018)

    Article  Google Scholar 

  30. Y. Jiang, J.L. Hor, D. Lee, K.T. Turner, ACS Appl. Mater. Interfaces. 10, 44011–44017 (2018)

    Article  CAS  Google Scholar 

  31. L. Lamb, T.B. Hoshizaki, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 223, 1021–1031 (2009)

    Article  CAS  Google Scholar 

  32. L. Lamb, A. Post, T.B. Hoshizaki, J. ASTM Int. (2009). https://doi.org/10.1520/JAI101884

    Article  Google Scholar 

  33. T.B. Hoshizaki, A. Post, J. ASTM Int. (2009). https://doi.org/10.1520/JAI101883

    Article  Google Scholar 

  34. G. Gimbel, T.B. Hoshizaki, Proceedings of the Fifth International Symposium on Safety in Ice Hockey, Denver, Colorado, USA (Sage, California, 2008)

    Google Scholar 

  35. T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, M. Wegener, Adv. Mater. 28, 5865–5870 (2016)

    Article  CAS  Google Scholar 

  36. Y. Jiang, L.M. Korpas, J.R. Raney, Nat. Commun. 10, 128 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Vehicle Technologies Office (VTO) in the Department of Energy (DOE), award number: Award VTO CPS 36928. S.Z. acknowledges the supports from University of North Texas Undergraduate Research Fellowship (URF) from Honors College. Y.J. acknowledges the Ralph E. Powe Junior Faculty Enhancement Awards from Oak Ridge Associated Universities (ORAU).

Funding

Funding was provided by Vehicle Technologies Office (Grant No. VTO CPS 36928),[University of North Texas (Grant No. Undergraduate Research Fellowship), and Oak Ridge Associated Universities (Grant No. Ralph E. Powe Junior Faculty Enhancement Awards)].

Author information

Authors and Affiliations

Authors

Contributions

YJ performed the conception and design of this paper. SF organized the manuscript and performed impact tests. SZ performed numerical simulations and experiments. All authors contributed to the manuscript writing and revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yijie Jiang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1611 kb)

Supplementary file2 (MP4 2530 kb)

Supplementary file3 (MP4 2907 kb)

Supplementary file4 (MP4 1318 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdousi, S., Zoch, S. & Jiang, Y. 3D-printed energy-absorbing structures using instability and air frictional and suction dissipation. MRS Communications 13, 1025–1030 (2023). https://doi.org/10.1557/s43579-023-00383-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00383-w

Keywords

Navigation