Skip to main content
Log in

Ag–Ni–Fe–P multielemental nanoparticles in situ grown on reduced graphene oxide with excellent electromagnetic absorption properties

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The monodisperse Ag–Ni–Fe–P multielemental nanoparticles were synthesized using a simple colloidal synthesis strategy, with size control achieved at approximately 9 nm. Subsequently, a monodisperse Ag–Ni–Fe–P/reduced graphene oxide composite was synthesized via the hot injection method. The Ag–Ni–Fe–P multielemental nanoparticles maintained their small size and uniform dispersion on the reduced graphene oxide, without any aggregation. When compared to the solo Ag–Ni–Fe–P multielemental nanoparticles, the composite exhibited significantly improved electromagnetic absorption performance, with a reflection loss of up to − 40.03 dB at the thickness of 3 mm and an effective electromagnetic absorption bandwidth of up to 3.1 GHz.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available on request from the corresponding author.

References

  1. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788

    Article  CAS  Google Scholar 

  2. Z.H. Qin, C.Y. Wang, B. Zhong, Y.Y. Ma, W.D. Chen, X.J. Li, P. Zhang, Treatment on Co/GNs composites with Ce(NO3)3 aqueous solution for selective multiple-broadband electromagnetic wave absorption performance. J. Mater. Res. 37, 1059–1069 (2022). https://doi.org/10.1557/s43578-022-00505-5

    Article  CAS  Google Scholar 

  3. B. Zhao, B.B. Fan, G. Shao, B.B. Wang, X.X. Pian, W. Li, R. Zhang, Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Appl. Surf. Sci. 307, 293–300 (2014). https://doi.org/10.1016/j.apsusc.2014.04.029

    Article  CAS  Google Scholar 

  4. Y.P. Duan, Y.L. Cui, B. Zhang, G.J. Ma, T.M. Wang, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloys. Compd. 773, 194–201 (2018). https://doi.org/10.1016/j.jallcom.2018.09.096

    Article  CAS  Google Scholar 

  5. B.Y. Kuang, W.L. Song, M.Q. Ning, J.B. Li, Z.J. Zhao, D.Y. Guo, M.S. Cao, H.B. Jin, Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018). https://doi.org/10.1016/j.carbon.2017.10.092

    Article  CAS  Google Scholar 

  6. T.T. Li, L. Xia, H. Yang, X.Y. Wang, T. Zhang, X.X. Huang, L. Xiong, C.L. Qin, G.W. Wen, Construction of a Cu-Sn heterojunction interface derived from a Schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 13, 11911–11919 (2021). https://doi.org/10.1021/acsami.0c22049

    Article  CAS  Google Scholar 

  7. T. Long, L. Hu, H.X. Dai, Y.X. Tang, Facile synthesis of Ag-reduced graphene oxide hybrids and their application in electromagnetic interference shielding. Appl. Phys. A 116, 25–32 (2014). https://doi.org/10.1007/s00339-014-8517-x

    Article  CAS  Google Scholar 

  8. Z.T. Zhu, X. Sun, G.X. Li, H.R. Xue, H. Guo, X.L. Fan, X.C. Pan, J.P. He, Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 377, 95–103 (2014). https://doi.org/10.1016/j.jmmm.2014.10.079

    Article  CAS  Google Scholar 

  9. Y. Guo, X.Z. Zhang, X.Q. Feng, X. Jian, L. Zhang, L.J. Deng, Non-isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature. Compos. B 155, 282–287 (2018). https://doi.org/10.1016/j.compositesb.2018.08.112

    Article  CAS  Google Scholar 

  10. Y.X. Xia, W.W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591

    Article  CAS  Google Scholar 

  11. Z.Y. Xu, X.J. Zhang, X.D. Wang, J.J. Fang, Y.F. Zhang, X.R. Liu, W. Zhu, Y.S. Yan, Z.B. Zhuang, Synthesis of Ag-Ni–Fe-P multielemental nanoparticles as bifunctional oxygen reduction/evolution reaction electrocatalysts. ACS Nano 15, 7131–7138 (2021). https://doi.org/10.1021/acsnano.1c00305

    Article  CAS  Google Scholar 

  12. A.K. Singh, A. Kumar, A. Srivastava, A.N. Yadav, K. Haldar, V. Gupta, K. Singh, Lightweight reduced graphene oxide-ZnO nanocomposite for enhanced dielectric loss and excellent electromagnetic interference shielding. Compos. B 172, 234–242 (2019). https://doi.org/10.1016/j.compositesb.2019.05.062

    Article  CAS  Google Scholar 

  13. X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu, W.Y. Duan, L.F. Cheng, L.T. Zhang, Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938

    Article  CAS  Google Scholar 

  14. Y.L. Ren, H.Y. Wu, M.M. Lu, Y.J. Chen, C.L. Zhu, P. Gao, M.S. Cao, C.Y. Li, Q.Y. Ouyang, Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell and ZnO nanoparticles: synthesis and excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 4, 6436–6442 (2012). https://doi.org/10.1021/am3021697

    Article  CAS  Google Scholar 

  15. Z.Q. Xu, S. Wang, Y. Xie, Z.P. Xing, Q. Li, L.H. Qi, K. Pan, Y.J. Chen, Monodisperse branched nickel carbide nanoparticles in situ grown on reduced graphene oxide with excellent electromagnetic absorption properties. J. Alloys Compd. 900, 163453 (2022). https://doi.org/10.1016/j.jallcom.2021.163453

    Article  CAS  Google Scholar 

  16. K.W. Liu, C.L. Zhang, Y.D. Sun, G.H. Zhang, X.C. Shen, F. Zou, H.C. Zhang, Z.W. Wu, E.C. Wegener, C.J. Taubert, J.T. Miller, Z.M. Peng, Y. Zhu, High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 12, 158–167 (2018). https://doi.org/10.1021/acsnano.7b04646

    Article  CAS  Google Scholar 

  17. X. Zhang, Y.H. Wu, Y.F. Sun, Q.Y. Liu, L. Tang, J.X. Guo, CoFeP hollow cube as advanced electrocatalyst for water oxidation. Inorg. Chem. Front. 6, 604–611 (2019). https://doi.org/10.1039/c8qi01227j

    Article  CAS  Google Scholar 

  18. L.Z. Ma, Y.F. Sun, J.X. Guo, NiFeP nanocubes as advanced electrode material for hydrogen evolution and supercapacitor. Colloid Interface Sci. 45, 100520 (2021). https://doi.org/10.1016/j.colcom.2021.100520

    Article  CAS  Google Scholar 

  19. C.H. Wang, L.S. Zong, N. Li, Y.X. Pan, Q. Liu, F.F. Zhang, L.Y. Qiao, J.Y. Wang, X.G. Jian, Light-weight 1D heteroatoms-doped Fe3C@C nanofibers for microwave absorption with a thinner matching thickness. J. Alloys Compd. 885, 160968–160977 (2021). https://doi.org/10.1016/j.jallcom.2021.160968

    Article  CAS  Google Scholar 

  20. W.L. Shao, F.Y. Hu, C. Song, J.Y. Wang, C. Liu, Z.H. Weng, X.G. Jian, Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7, 6363–6373 (2019). https://doi.org/10.1039/c8ta11921j

    Article  CAS  Google Scholar 

  21. X.P. Li, Z.Q. Li, L.K. Que, Y.J. Ma, L. Zhu, C.H. Pei, Electromagnetic wave absorption performance of Graphene/SiC nanowires based on graphene oxide. J. Alloys Compd. 835, 155172–155183 (2020). https://doi.org/10.1016/j.jallcom.2020.155172

    Article  CAS  Google Scholar 

  22. T.Q. Hou, Z.R. Jia, B.B. Wang, H.B. Li, X.H. Liu, L. Bi, G.L. Wu, MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 414, 128875 (2021). https://doi.org/10.1016/j.cej.2021.128875

    Article  CAS  Google Scholar 

  23. C. Wang, V. Murugadoss, J. Kong, Z.F. He, X.M. Mai, Q. Shao, Y.J. Chen, L. Guo, C.T. Liu, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006

    Article  CAS  Google Scholar 

  24. H.R. Yuan, X. Zhang, F. Yan, S. Zhang, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials. Carbon 140, 368–376 (2018). https://doi.org/10.1016/j.carbon.2018.08.073

    Article  CAS  Google Scholar 

  25. X.C. Zhang, J. Xu, H.R. Yuan, S. Zhang, Q.Y. Ouyang, C.L. Zhu, X.T. Zhang, Y.J. Chen, Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11, 39100–39108 (2019). https://doi.org/10.1021/acsami.9b13751

    Article  CAS  Google Scholar 

  26. T.Q. Hou, Z.R. Jia, S.Q. He, Y. Su, X.D. Zhang, B.H. Xu, X.H. Liu, G.L. Wu, Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J. Colloid Interface Sci. 583, 321–330 (2021). https://doi.org/10.1016/j.jcis.2020.09.054

    Article  CAS  Google Scholar 

  27. J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4, 7130–7140 (2016). https://doi.org/10.1039/c6tc02020h

    Article  CAS  Google Scholar 

  28. X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y.J. Chen, CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208

    Article  CAS  Google Scholar 

  29. X.H. Li, Z. Cao, Z.J. Zhang, H.X. Dang, Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 252, 7856–7861 (2006). https://doi.org/10.1016/j.apsusc.2005.09.068

    Article  CAS  Google Scholar 

  30. J. Chen, B.W. Yao, C. Li, G.Q. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Natural Science Foundation of China (21473051), the Natural Science Foundation of Heilongjiang Province (LH2019B014), and Youth Science and Technology Innovation Team Project of Heilongjiang Province (2018-KYYWF-1593).

Author information

Authors and Affiliations

Authors

Contributions

WC: Writing—original draft. YY: Investigation. SW: Data curation. RS: Formal analysis. WJ: Software. LQ: Supervision, Conceptualization. KP: Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Lihong Qi or Kai Pan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1560 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Yu, Y., Wang, S. et al. Ag–Ni–Fe–P multielemental nanoparticles in situ grown on reduced graphene oxide with excellent electromagnetic absorption properties. MRS Communications 13, 546–553 (2023). https://doi.org/10.1557/s43579-023-00380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00380-z

Keywords

Navigation