Skip to main content
Log in

Orientational dependence of Poisson’s ratio in tetragonal γ-TiAl single crystal

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The orientational dependence of Poisson’s ratio ν in tetragonal single crystalline γ-TiAl was calculated based on previously measured single crystal elastic constants. Depending on the orientation of the applied stress, ν can be quite isotropic or highly anisotropic when the transverse direction varies. For example, when the stress axis is along the [001] direction, the resulting Poisson’s ratio is a constant independent of the transverse direction; when the stress tensile axis is perpendicular to the \(\left(\overline{1 }01\right)\) crystallographic plane, ν is highly anisotropic, varying from a slightly negative value to more than 0.40.

Graphical abstract

Orientational dependence of Poisson’s ratio ν in γ-TiAl single crystal for a [110] tensile direction at \(T=298 K\). θ is the angle between the [001] crystal axis and the transverse direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

All data generated during the current study are available from the corresponding author on reasonable request.

References

  1. X. Wu, Review of alloy and process development of TiAl alloys. Intermetallics 14, 1114–1122 (2006). https://doi.org/10.1016/j.intermet.2005.10.019

    Article  CAS  Google Scholar 

  2. H. Clemens, S. Mayer, Intermetallic titanium aluminides in aerospace applications—processing, microstructure and properties. Mater. High Temp. 33, 560–570 (2016). https://doi.org/10.1080/09603409.2016.1163792

    Article  CAS  Google Scholar 

  3. T. Tetsui, K. Shindo, S. Kobayashi, M. Takeyama, A newly developed hot worked TiAl alloy for blades and structural components. Scr. Mater. 47(6), 399–403 (2002). https://doi.org/10.1016/S1359-6462(02)00158-6

    Article  CAS  Google Scholar 

  4. B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines. Mater. High Temp. 33, 549–559 (2016). https://doi.org/10.1080/09603409.2016.1183068

    Article  CAS  Google Scholar 

  5. B.P. Bewlay, M.J. Weimer, T. Kelly, A. Suzuki, P. Subramanian, The Science, technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc. 1516, 49–58 (2013). https://doi.org/10.1557/opl.2013.44

    Article  CAS  Google Scholar 

  6. B. Jeong, J. Kim, T. Lee, S.W. Kim, S. Ryu, Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal. Sci. Rep. 8, 15200 (2018). https://doi.org/10.1038/s41598-018-33377-z

    Article  CAS  Google Scholar 

  7. Y.W. Kim, Intermetallic alloys based on gamma titanium aluminide. JOM 41, 24–30 (1989). https://doi.org/10.1007/BF03220267

    Article  CAS  Google Scholar 

  8. P. Villar, L.D. Calvert (eds), Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Vol. 2, (1985), (American Society of Metals, Metals Park)

  9. W.J. Zhang, B.V. Reddy, S.C. Deevi, Physical properties of TiAl-base alloys. Scr. Mater. 45, 645–651 (2001). https://doi.org/10.1016/S1359-6462(01)01075-2

    Article  CAS  Google Scholar 

  10. B. Liu, Y. Liu, Powder metallurgy titanium aluminides alloys, Ch. 27 in Titanium Poder Metallurgy: Science, Technology, and Applications, Butterworth-Heinemann, ed. M. Qian and F. H. Froes, pp. 515–531 (2015). doi: https://doi.org/10.1016/B978-0-12-800054-0.00027-7

  11. O. Genc, R. Unal, Development of gamma titanium aluminides (γ-TiAl) alloys: a review. J. Alloys Compd. 929, 167262 (2022). https://doi.org/10.1016/j.jallcom.2022.167262

    Article  CAS  Google Scholar 

  12. Y. Liu, B. Tang, X.Y. Huang, L. Zhu, D. Liu, R. Yang, J.S. Li, Microstructural stability and creep properties of middle Nb γ-TiAl alloy with a modulated microstructure. Intermetallics 151(12), 107733 (2022). https://doi.org/10.1016/j.intermet.2022.107733

    Article  CAS  Google Scholar 

  13. C.L. Fu, M.H. Yoo, Elastic constants, fault energies, and dislocation reactions in TiAl: a first-principles total-energy investigation. Philos. Mag. Lett. 62(3), 159–165 (1990). https://doi.org/10.1080/09500839008215053

    Article  CAS  Google Scholar 

  14. Y. He, R.B. Schwarz, A. Migliori, S.H. Whang, Elastic constants of single crystal γ-TiAl. J. Mater. Res. 10(5), 1187–1195 (1995). https://doi.org/10.1557/JMR.1995.1187

    Article  CAS  Google Scholar 

  15. Y. He, R.B. Schwarz, T. Darling, M. Hundley, S.H. Whang, Z.M. Wang, Elastic constants and thermal expansion of single crystal γ-TiAl from 300 to 750 K. Mater. Sci. Eng. A 239–240, 157–163 (1997). https://doi.org/10.1016/S0921-5093(97)00575-3

    Article  Google Scholar 

  16. K. Tanaka, T. Ichitsubo, H. Inui, M. Yamaguchi, M. Koiwa, Single-crystal elastic constants of gamma-TiAl. Philos. Mag. Lett. 73(2), 71–78 (1996). https://doi.org/10.1080/095008396181019

    Article  CAS  Google Scholar 

  17. J. Turley, G. Sines, The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D 4(2), 264–271 (1971). https://doi.org/10.1088/0022-3727/4/2/312

    Article  CAS  Google Scholar 

  18. D.J. Gunton, G.A. Saunders, The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth. J. Mater. Sci. 7(9), 1061–1068 (1972). https://doi.org/10.1007/BF00550070

    Article  CAS  Google Scholar 

  19. Y. Li, The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials. Phys. Stat. Sol. A 38, 171–175 (1976). https://doi.org/10.1002/pssa.2210380119

    Article  CAS  Google Scholar 

  20. R.J. Bisplinghoff, J.W. Mar, T.H.H. Pian, Statics of Deformable Solids (Addison-Wesley, Reading, MA, 1965)

    Google Scholar 

  21. B.A. Auld, Acoustics Fields and Waves in Solids, vol. 1 (Wiley, New York, 1973)

    Google Scholar 

  22. J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985)

    Google Scholar 

  23. M.J.P. Musgrave, Crystal Acoustics. Ch. 3, Holden-Day, San Francisco, (1970)

  24. J. Cao, F. Li, Critical Poisson’s ratio between toughness and brittleness. Phil Mag Lett 96(11), 425–431 (2016). https://doi.org/10.1080/09500839.2016.1243264

    Article  CAS  Google Scholar 

  25. A.H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944)

    Google Scholar 

  26. T.H. Courtney, Mechanical Behavior of Materials (McGraw-Hill Inc, New York, 1990)

    Google Scholar 

  27. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011). https://doi.org/10.1038/nmat3134

    Article  CAS  Google Scholar 

  28. R.H. Baughman, J.M. Shacklette, A.A. Zakhidov, S. Stafström, Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998). https://doi.org/10.1038/32842

    Article  CAS  Google Scholar 

  29. F. Milstein, K. Huang, Existence of a negative Poisson ratio in fcc crystals. Phys. Rev. B 19, 2030–2033 (1979). https://doi.org/10.1103/PhysRevB.19.2030

    Article  CAS  Google Scholar 

  30. A. Yeganeh-Haeri, D.J. Weidner, J.B. Parise, Elasticity of α-cristobalite—a silicon dioxide with negative Poisson’s ratio. Science 257, 650–652 (1992). https://doi.org/10.1126/science.257.5070.650

    Article  CAS  Google Scholar 

  31. M. Rovati, On the negative Poisson’s ratio of an orthorhombic alloy. Scr. Mater. 48(3), 235–240 (2003). https://doi.org/10.1016/S1359-6462(02)00386-X

    Article  CAS  Google Scholar 

  32. R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987). https://doi.org/10.1126/science.235.4792.1038

    Article  CAS  Google Scholar 

  33. R.S. Lakes, Advances in negative Poisson’s ratio materials. Adv. Mater. 5(4), 293–296 (1993). https://doi.org/10.1002/adma.19930050416

    Article  CAS  Google Scholar 

  34. L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Structures 69–70, 475–490 (2015). https://doi.org/10.1016/j.ijsolstr.2015.05.005

    Article  Google Scholar 

  35. K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Molecular network design. Nature 353, 124 (1991). https://doi.org/10.1038/353124a0

    Article  CAS  Google Scholar 

  36. B.D. Caddock, K.E. Evans, Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D 22(12), 1877–1882 (1989). https://doi.org/10.1088/0022-3727/22/12/012

    Article  CAS  Google Scholar 

  37. G.W. Milton, Composite materials with Poisson’s ratios close to −1. J. Mech. Phys. Solids 40, 1105–1137 (1992). https://doi.org/10.1016/0022-5096(92)90063-8

    Article  Google Scholar 

  38. X.K. Ma, J. Liu, Y.C. Fan, J.F. Hu, M.W. Zhao, Giant negative Poisson’s ratio in two-dimensional V-shaped materials. Nanoscale Adv. 3, 4554–4560 (2021). https://doi.org/10.1039/d1na00212k

    Article  CAS  Google Scholar 

  39. N. Keskar, J. Chelikowsky, Negative Poisson ratios in crystalline SiO2 from first-principles calculations. Nature 358, 222–224 (1992). https://doi.org/10.1038/358222a0

    Article  CAS  Google Scholar 

  40. T.C.T. Ting, T.Y. Chen, Poisson’s ratio for anisotropic elastic materials can have no bounds. Quart. J. Mech. Appl. Math. 58(1), 73–82 (2005). https://doi.org/10.1093/qjmamj/hbh021

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. R. B. Schwarz, A. Migliori, S. H. Whang for their help and useful discussions during the elastic constant measurements of γ-TiAl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y. Orientational dependence of Poisson’s ratio in tetragonal γ-TiAl single crystal. MRS Communications 13, 431–437 (2023). https://doi.org/10.1557/s43579-023-00376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00376-9

Keywords

Navigation