Skip to main content
Log in

Unleashing methylammonium–guanidinium lead iodide hybrid perovskite spherulitic microstructures: A structural and morphological investigation

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Perovskites can offer an attractive replacement option for existing commercial solar technologies. Herein microstructure plays an important role in improving the efficiency and stability of solar cells. Previously unidentified spherulitic microstructures of self-assembled polycrystalline perovskites are explored in this report. For this an intermediate phase of a promising guanidinium (GUAI)-rich perovskite has been investigated for its structural and morphological properties. This study infuses new insight into the evolution of perovskite microstructure from heterogeneity to homogeneity, as a result unravels the structure of perovskite embryonic spherulites, lamellar arrangements, transcrystalline nature, novel spherulites bridging, hole nucleation, impingement, and defects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the published article and its supplementary information.

References

  1. Y. Yuan, A. He, X. Hao, Wu. Lili, D. Zhao, J. Zhang, J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09122-8

    Article  Google Scholar 

  2. L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang, Y. Sun, J. Yang, X. Li, Nano-Micro. Lett. (2019). https://doi.org/10.1007/s40820-019-0244-6

    Article  Google Scholar 

  3. J. Yang, S. Chen, J. Xu, Q. Zhang, H. Liu, Z. Liu, M. Yuan, Appl. Sci. (2019). https://doi.org/10.3390/app9204393

    Article  Google Scholar 

  4. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Il Seok, Nat Mater (2014). https://doi.org/10.1038/nmat4014

    Article  Google Scholar 

  5. P. Boonmongkolrasa, D. Kima, E.M. Alhabshib, I. Gereigeb, B. Shin, RSC Adv. (2018). https://doi.org/10.1039/C8RA03471K

    Article  Google Scholar 

  6. Z. Bi, X. Rodríguez-Martínez, C. Aranda, E. Pascual-San-José, A.R. Goñi, M. Campoy-Quiles, X. Xu, A. Guerrero, J. Mater. Chem. A. (2018). https://doi.org/10.1039/C8TA06771F

    Article  Google Scholar 

  7. D. Angmo, X. Peng, A. Seeber, C. Zuo, M. Gao, Q. Hou, J. Yuan, Q. Zhang, Y.B. Cheng, D. Vak, Small (2019). https://doi.org/10.1002/smll.201904422

    Article  Google Scholar 

  8. D. Angmo, G. DeLuca, A.D. Scully, A.S.R. Chesman, A. Seeber, C. Zuo, D. Vak, U. Bach, M. Gao, Cell Rep. Phys. Sci. (2021). https://doi.org/10.1016/j.xcrp.2020.100293

    Article  Google Scholar 

  9. F. Huang, A.R. Pascoe, W.-Q. Wu, Z. Ku, Y. Peng, J. Zhong, R.A. Caruso, Y.-B. Cheng, Adv. Mater. (2017). https://doi.org/10.1002/adma.201601715

    Article  Google Scholar 

  10. M.U. Rothmann, W. Li, J. Etheridge, Y.-B. Cheng, Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700912

    Article  Google Scholar 

  11. J. Kumar, P. Srivastava, M. Bag, Chem. Sec. Solid State Chem. Front (2022). https://doi.org/10.3389/fchem.2022.842924

    Article  Google Scholar 

  12. S. Nurkhamidah, E.M. Woo, Colloid Polym Sci. (2012). https://doi.org/10.1007/s00396-011-2544-3

    Article  Google Scholar 

  13. A.D. Jodlowski, C.R. Carmona, G. Grancini, M. Salado, M. Ralaiarisoa, S. Ahmad, N. Koch, L. Camacho, G. de Miguel, M.K. Nazeeruddin, Nat. Energy (2017). https://doi.org/10.1038/s41560-017-0054-3

    Article  Google Scholar 

  14. P. Torchyniuk, O. Vyunov, V. Yukhymchuk, O. Hreshchuk, S. Vakarov, A. Belous, Ukrainian Chem. J. (2021). https://doi.org/10.33609/2708-129X.87.08.2021.63-81

    Article  Google Scholar 

  15. X. Guo, C. McCleese, C. Kolodziej, A.C.S. Samia, Y. Zhao, C. Burda, Dalton Trans. (2016). https://doi.org/10.1039/C5DT04420K

    Article  Google Scholar 

  16. E. Vega, M. Mollar, B. Marí, J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.12.177

    Article  Google Scholar 

  17. A.A. Petrov, I.P. Sokolova, N.A. Belich et al., J. Phys. Chem. C. (2017). https://doi.org/10.1021/acs.jpcc.7b08468

    Article  Google Scholar 

  18. F.F. Targhi, Y.S. Jalili, F. Kanjouri, Results in Phys. (2018). https://doi.org/10.1016/j.rinp.2018.07.007

    Article  Google Scholar 

  19. S. Andalibi, A. Rostami, G. Darvish, M.K.M.- Farshi, Opt. Quant. Electron. (2016). https://doi.org/10.1007/s11082-016-0525-y

    Article  Google Scholar 

  20. M. Long, T. Zhang, Y. Chai, C.-F. Ng, T.C.W. Mak, J. Xu, K. Yan, Nat. Commun. (2016). https://doi.org/10.1038/ncomms13503

    Article  Google Scholar 

  21. S. Kavadiya, J. Strzalka, D. M. Niedzwiedzki and P. Biswas. (2019) J. Mater Chem. Doi: https://doi.org/10.1039/C9TA02358E

  22. Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Chem. Mater. (2015). https://doi.org/10.1021/acs.chemmater.5b01017

    Article  Google Scholar 

  23. E.M. Woo, G. Lugito, S. Nagarajan, J. Polym. Res. (2020). https://doi.org/10.1007/s10965-019-1959-2

    Article  Google Scholar 

  24. H. Yasuda, K. Morishita, N. Nakatsuka et al., Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-11079-y

    Article  Google Scholar 

  25. L. Gránásy, T. Pusztai, G. Tegze, J.A. Warren, J.F. Douglas, Phys. Rev. E Stat Nonlin Soft Mat. Phys. (2005). https://doi.org/10.1103/PhysRevE.72.011605

    Article  Google Scholar 

  26. T.G. Stange, D.F. Evans, W.A. Hendrickson, Langmuir (1997). https://doi.org/10.1021/la962090k

    Article  Google Scholar 

  27. C. Motzer, M. Reichling, J. Appl. Phys. (2010). https://doi.org/10.1063/1.3510535

    Article  Google Scholar 

  28. H. Quan, Z.-M. Li, M.-B. Yang, R. Huang, Compos. Sci. Technol. (2005). https://doi.org/10.1016/j.compscitech.2004.11.015

    Article  Google Scholar 

Download references

Acknowledgments

Monika Mukul greatly acknowledges the experimental support from the CSIR-NCL, Pune. She is also thankful to Bharathkumar HJ for his support during experimental work.

Author information

Authors and Affiliations

Authors

Contributions

MM contributed to conceptualization, data curation, methodology, investigation, writing of the original draft, review and editing of the manuscript, and visualization. Dr. SK contributed to resources and review. Dr. MR contributed to conceptualization, resources, review and editing of the manuscript, methodology, and supervision. Dr. SKT contributed to resources, methodology, supervision, and review and editing of the manuscript.

Corresponding authors

Correspondence to Mamta Rani or Surya Kant Tripathi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9865 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukul, M., Kaliaperumal, S., Rani, M. et al. Unleashing methylammonium–guanidinium lead iodide hybrid perovskite spherulitic microstructures: A structural and morphological investigation. MRS Communications 13, 406–415 (2023). https://doi.org/10.1557/s43579-023-00375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00375-w

Keywords

Navigation