Skip to main content
Log in

Multi-modification enables TiO2 nanotube arrays with enhanced photoelectrochemical performance

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The modification of TiO2 nanotube arrays (TiO2 NTS) to enhance the photoelectrochemical performance is highly applauded yet challenging. In this work, the multi-modification of TiO2 NTS has been achieved by introducing hydrogenation (self-doping) and sulfur-doping as well as semiconductor compounding of WO3, marked as H/S-WO3/TiO2 NTS. Benefiting from the synergistic effect of self-doping, sulfur-doping and WO3 compounding on TiO2 NTS, the as-prepared H/S-WO3/TiO2 NTS achieved a saturated photocurrent density of 2.48 mA/cm2. The corresponding photoconversion efficiency was 1.45%, which was 6.59 times than that of pure TiO2 NTS. Our superior TiO2 NTS enabled by semiconductor compounding, self-doping and sulfur-doping enlightens a new arena for the development of high-performance photoanode materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author.

References

  1. X. Zheng, Z. Liu, J. Sun et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6

    Article  CAS  Google Scholar 

  2. X. Zheng, T. Ahmad, W. Chen, Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 39, 365 (2021). https://doi.org/10.1016/j.ensm.2021.04.027

    Article  Google Scholar 

  3. W. Wang, Y. Shi, C. Zhang et al., Conversion and storage of solar energy for cooling. Energy Environ. Sci. 15, 136 (2022). https://doi.org/10.1039/D1EE01688A

    Article  Google Scholar 

  4. F. Zhang, X. Xue, TiO2/Graphene nanotube arrays with enhanced photoelectric properties. Mater. Sci. Forum. 1058, 51 (2022). https://doi.org/10.4028/p-4t42j5

    Article  Google Scholar 

  5. K. Hong, J. Zhou, H. Tong et al., A stable photoelectrochemical graphene/CdS/TiO2 film for nano-photoanode. MRS Commun. 11, 57 (2021). https://doi.org/10.1557/s43579-021-00013-3

    Article  CAS  Google Scholar 

  6. Z. Dong, D. Ding, T. Li et al., Facile preparation of Ti3+/Ni co-doped TiO2 nanotubes photoanode for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 480, 219 (2019). https://doi.org/10.1016/j.apsusc.2019.02.237

    Article  CAS  Google Scholar 

  7. H. Yan, R. Wang, R. Liu et al., Recyclable and reusable direct Z-scheme heterojunction CeO2/TiO2 nanotube arrays for photocatalytic water disinfection. Appl. Catal. B 291, 120096 (2021). https://doi.org/10.1016/j.apcatb.2021.120096

    Article  CAS  Google Scholar 

  8. A. Son, J. Lee, M. Seid et al., Ti3+ self-doped TiO2 nanotube arrays revisited as Janus photoelectrodes for persulfate activation and water treatment. Appl. Catal. B 315, 121543 (2022). https://doi.org/10.1016/j.apcatb.2022.121543

    Article  CAS  Google Scholar 

  9. K. Wang, K. Zhao, X. Qin et al., Treatment of organic wastewater by a synergic electrocatalysis process with Ti3+ self-doped TiO2 nanotube arrays electrode as both cathode and anode. J. Hazard Mater. 424, 127747 (2022). https://doi.org/10.1016/j.jhazmat.2021.127747

    Article  CAS  Google Scholar 

  10. X. Zhang, Y. Wang, C. Wei et al., One-step synthesis of N-doped porous wall TiO2 nanotube arrays for efficient removal of dibutyl phthalate under visible light. J. Photochem. Photobiol. A 430, 113975 (2022). https://doi.org/10.1016/j.jphotochem.2022.113975

    Article  CAS  Google Scholar 

  11. Q. Wang, S. Zhu, S. Zhao et al., Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production. Fuel 322, 124163 (2022). https://doi.org/10.1016/j.fuel.2022.124163

    Article  CAS  Google Scholar 

  12. J. Zhang, C. Yang, S. Li et al., Preparation of Fe3+ doped high-ordered TiO2 nanotubes a-rays with visible photocatalytic activities. Nanomaterials-Basel 10, 2107 (2020). https://doi.org/10.3390/nano10112107

    Article  CAS  Google Scholar 

  13. N. Tahmasebizad, M. Hamedani, M. Ghazani et al., Photocatalytic activity and antibacterial behavior of TiO2 coatings co-doped with copper and nitrogen via sol-gel method. J. Sol-Gel Sci. Technol. 93, 570 (2020). https://doi.org/10.1007/s10971-019-05085-1

    Article  CAS  Google Scholar 

  14. S. Xin, X. Ma, J. Lu et al., Enhanced visible light photoelectrocatalytic degradation of o-chloronitrobenzene through surface plasmonic Au nanoparticles and g-C3N4 co-modified TiO2 nanotube arrays photoanode. Appl. Catal. B 323, 122174 (2023). https://doi.org/10.1016/j.apcatb.2022.122174

    Article  CAS  Google Scholar 

  15. X. Zheng, S. Das, Y. Gu et al., Cadmium sulfide/lead sulfide co-sensitized TiO2 enhances photoelectrochemical performance and corrosion resistance of 304 stainless steel. MRS Commun. 9, 1361 (2019). https://doi.org/10.1557/mrc.2019.151

    Article  CAS  Google Scholar 

  16. K. Cho, S. Lee, H. Kim et al., Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection w-ith self-doped titanium dioxide nanotube arrays. Appl. Catal. B 257, 117910 (2019). https://doi.org/10.1016/j.apcatb.2019.117910

    Article  CAS  Google Scholar 

  17. B. Zhang, X. Ma, J. Ma et al., Fabrication of rGO and g-C3N4 co-modified TiO2 nanotube arrays photoelectrodes with enhanced photocatalytic performance. J. Colloid Interface Sci. 577, 75 (2020). https://doi.org/10.1016/j.jcis.2020.05.031

    Article  CAS  Google Scholar 

  18. Y. Yu, L. Zhu, G. Liu et al., Pd quantum dots loading Ti3+, N co-doped TiO2 nanotube arrays with enhanced photocatalytic hydrogen production and the salt ions effect. Appl. Surf. Sci. 540, 148239 (2021). https://doi.org/10.1016/j.apsusc.2020.148239

    Article  CAS  Google Scholar 

  19. Y. Kong, M. Sun, X. Hong et al., The co-modification of MoS2 and CdS on TiO2 nanotube array for improved photoelectrochemical properties. Ionics 27, 4371 (2021). https://doi.org/10.1007/s11581-021-04157-z

    Article  CAS  Google Scholar 

  20. Y. Zhang, J. Nie, Q. Wang et al., Synthesis of Co3O4/Ag/TiO2 nanotubes arrays via photo-deposition of Ag and modification of Co3O4 (311) for enhancement of visible-light photo-electrochemical performance. Appl. Surf. Sci. 427, 1009 (2018). https://doi.org/10.1016/j.apsusc.2017.09.008

    Article  CAS  Google Scholar 

  21. Y. Yao, M. Sun, Z. Zhang et al., In situ synthesis of MoO3/Ag/ TiO2 nanotube arrays for enhancement of visible-light photoelectrochemical performance. Int. J. Hydrogen Energy. 44, 9348 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.100

    Article  CAS  Google Scholar 

  22. S. Zhou, S. Liu, K. Su et al., Graphite carbon nitride coupled S-doped hydrogenated TiO2 nanotube arrays with improved photoelectrochemical performance. J. Electroanal. Chem. 862, 114008 (2020). https://doi.org/10.1016/j.jelechem.2020.114008

    Article  CAS  Google Scholar 

  23. S. Zhou, S. Liu, K. Su et al., Facile synthesis of Ti3+ self-doped and sulfur-doped TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance. J. Alloys Compd. 804, 10 (2019). https://doi.org/10.1016/j.jallcom.2019.06.294

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Plan for Scientific Innovation Talent of Henan University of Technology (11CXRC16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikai Liu.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships. The authors declared no potential conflicts of interest with respect to the research, author-ship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, T., Liu, S., Liu, K. et al. Multi-modification enables TiO2 nanotube arrays with enhanced photoelectrochemical performance. MRS Communications 13, 466–472 (2023). https://doi.org/10.1557/s43579-023-00362-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00362-1

Keywords

Navigation