Skip to main content
Log in

Enhancing the antibacterial efficacy of hot water treated nanostructured aluminum foil by essential oil

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Microbial contamination is a significant issue in the food industry, often leading to foodborne illnesses. This study introduces our hot water-treated (HWT) nanostructured aluminum foil, coated with a layer of tea-tree essential oil, which works synergistically to inactivate bacteria. Our results show that this method inactivated ~ 98% of the Escherichia coli and Staphylococcus epidermidis tested. This approach also offers the benefit of robustly holding oil on the foil surface due to the superoleophilicity of the nanostructured aluminum oxide layer, further increasing its efficacy. In addition, the HWT process can be extended to other forms of aluminum-based materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.G. Nyachuba, Foodborne illness: is it on the rise? Nutr. Rev. 68, 257–269 (2010). https://doi.org/10.1111/j.1753-4887.2010.00286.x

    Article  Google Scholar 

  2. S. Hoffmann, B. Maculloch, M. Batz, Economic burden of major foodborne illnesses acquired in the United States. Econ Cost Foodborne Illnesses United States 1–74 (2015)

  3. CDC. How food gets contaminated—the food production chain. Cent. Dis. Control Prev. 3–5 (2017)

  4. C. Manyi-Loh, S. Mamphweli, E. Meyer, A. Okoh, Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules (2018). https://doi.org/10.3390/molecules23040795

    Article  Google Scholar 

  5. B.M. Marshall, S.B. Levy, Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011). https://doi.org/10.1128/CMR.00002-11

    Article  CAS  Google Scholar 

  6. I.A. Jones, L.T. Joshi, Biocide use in the antimicrobial era: a review. Molecules (2021). https://doi.org/10.3390/molecules26082276

    Article  Google Scholar 

  7. W. Yin, Y. Wang, L. Liu, J. He, Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20143423

    Article  Google Scholar 

  8. E.P. Abraham, The Antibiotics. Compr. Biochem. 11, 181–224 (1963). https://doi.org/10.1016/B978-1-4831-9711-1.50022-3

    Article  Google Scholar 

  9. M.K. Swamy, M.S. Akhtar, U.R. Sinniah, Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid.-Based Complement Altern. Med. (2016). https://doi.org/10.1155/2016/3012462

    Article  Google Scholar 

  10. G. Klein, C. Rüben, M. Upmann, Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr. Microbiol. 67, 200–208 (2013). https://doi.org/10.1007/s00284-013-0354-1

    Article  CAS  Google Scholar 

  11. S. Burt, Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94, 223–253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  12. J.B. Sharmeen, F.M. Mahomoodally, G. Zengin, F. Maggi, Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules (2021). https://doi.org/10.3390/molecules26030666

    Article  Google Scholar 

  13. J. Sharifi-Rad, A. Sureda, G.C. Tenore, M. Daglia, M. Sharifi-Rad, M. Valussi et al., Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules (2017). https://doi.org/10.3390/molecules22010070

    Article  Google Scholar 

  14. F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola, V. De Feo, Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6, 1451–1474 (2013). https://doi.org/10.3390/ph6121451

    Article  CAS  Google Scholar 

  15. L. Wang, C. Hu, L. Shao, The-antimicrobial-activity-of-nanoparticles–present-situati. Int. J. Nanomed. 12, 1227–1249 (2017)

    Article  CAS  Google Scholar 

  16. T.J. Beveridge, Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999). https://doi.org/10.1128/jb.181.16.4725-4733.1999

    Article  CAS  Google Scholar 

  17. A.H. Delcour, NIH Public Access 1794(5), 808–816 (2010). https://doi.org/10.1016/j.bbapap.2008.11.005.Outer

    Article  Google Scholar 

  18. J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767–2781 (2012). https://doi.org/10.2147/IJN.S24805

    Article  CAS  Google Scholar 

  19. L.B. Hassan, N.S. Saadi, T. Karabacak, Hierarchically rough superhydrophobic copper sheets fabricated by a sandblasting and hot water treatment process. Int. J. Adv. Manuf. Technol. 93, 1107–1114 (2017). https://doi.org/10.1007/s00170-017-0584-7

    Article  Google Scholar 

  20. N. Saadi, K. Alotaibi, L. Hassan, Q. Smith, F. Watanabe, A.A. Khan et al., Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment. Nanotechnology 32, 325103 (2021). https://doi.org/10.1088/1361-6528/abfd59

    Article  CAS  Google Scholar 

  21. J. Gupta, D. Bahadur, Defect-mediated reactive oxygen species generation in Mg-substituted ZnO nanoparticles: efficient nanomaterials for bacterial inhibition and cancer therapy. ACS Omega 3, 2956–2965 (2018). https://doi.org/10.1021/acsomega.7b01953

    Article  CAS  Google Scholar 

  22. Q. Smith, K. Burnett, N. Saadi, K. Alotaibi, A. Rahman, K. Al-Mayalee et al., Nanostructured antibacterial aluminum foil produced by hot water treatment against E. coli in meat. MRS Adv. 6, 695–700 (2021). https://doi.org/10.1557/s43580-021-00112-2

    Article  CAS  Google Scholar 

  23. K. Burnett, Q. Smith, A. Esparza, N. Saadi, J. Bush, T. Karabacak, The antibacterial efficacy of aluminum oxide nanostructures by hot water treatment for HVAC systems. MRS Adv. 6, 701–705 (2021). https://doi.org/10.1557/s43580-021-00126-w

    Article  CAS  Google Scholar 

  24. H.J. Dorman, S.G. Deans, Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88(2), 308–316 (2000). https://doi.org/10.1046/j.1365-2672.2000.00969.x

    Article  CAS  Google Scholar 

  25. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanis tic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016). https://doi.org/10.3389/fmicb.2016.01831

    Article  Google Scholar 

  26. S.M. Dizaj, F. Lotfpour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014). https://doi.org/10.1016/j.msec.2014.08.031

    Article  CAS  Google Scholar 

  27. S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S. Camera, J. Bellare, D. Dhavale, A. Jabgunde, B. Chopade, Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 7, 483–496 (2012). https://doi.org/10.2147/IJN.S24793

    Article  CAS  Google Scholar 

  28. M. Sienkiewicz, M. Łysakowska, M. Pastuszka, W. Bienias, E. Kowalczyk, The potential of use basil and rosemary essential oils as effective antibacterial agents. Molecules 18(8), 9334–9351 (2013). https://doi.org/10.3390/molecules18089334

    Article  CAS  Google Scholar 

  29. A. Ultee, M.H. Bennik, R. Moezelaar, The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68, 1561–1568 (2002). https://doi.org/10.1128/AEM.68.4.1561-1568.2002

    Article  CAS  Google Scholar 

  30. C.M. Mann, S.D. Cox, J.L. Markham, The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett. Appl. Microbiol. 30, 294–297 (2000). https://doi.org/10.1046/j.1472-765x.2000.00712.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinshell Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, Q., Burnett, K., Ali, N. et al. Enhancing the antibacterial efficacy of hot water treated nanostructured aluminum foil by essential oil. MRS Communications 13, 336–342 (2023). https://doi.org/10.1557/s43579-023-00349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00349-y

Keywords

Navigation