Skip to main content

Advertisement

Log in

On the 3D printing of polypropylene and post-processing optimization of thermomechanical properties

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Polypropylene (PP) is a highly desirable polyolefin in various plastic industries due to its outstanding thermomechanical properties and chemical resistance. Therefore, the 3D printing of PP is an interesting avenue to explore in digitized manufacturing, where more freedom in structural designs is available for new and extended applications, such as high-performance engineering parts. In this work, we 3D printed PP and studied the effect of printing parameters and post-processing conditions on the printed polymer’s thermomechanical behavior. Results showed that nozzle and bed temperatures of 220 and 100°C produced a high printing quality. Infill percentages between 80 and 90%, coupled with a 4-h annealing at 110ºC, also resulted in optimal printed properties. It is thought that PP can be potentially blended with polyethylene or other vinyl polymers for a more extended 3D printing utility and practical applications in rapid tooling and prototyping.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Additional data are available with the supplementary information file that will be made accessible with publication. In addition, more data and inquiry are possible through communication with the authors.

References

  1. M. Tolinski, Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene and TPO (William Andrew, Oxford, 2015)

    Google Scholar 

  2. N.K. Boaen, M.A. Hillmyer, Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 34(3), 267 (2005)

    Article  CAS  Google Scholar 

  3. A. Ammala, S. Bateman, K. Dean, E. Petinakis, P. Sangwan, S. Wong, Q. Yuan, L. Yu, C. Patrick, K. Leong, An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36(8), 1015 (2011)

    Article  CAS  Google Scholar 

  4. J. Gulmine, P. Janissek, H. Heise, L. Akcelrud, Polyethylene characterization by FTIR. Polym. Test. 21(5), 557 (2002)

    Article  CAS  Google Scholar 

  5. F. Padden Jr., H. Keith, Spherulitic crystallization in polypropylene. J. Appl. Phys. 30(10), 1479 (1959)

    Article  CAS  Google Scholar 

  6. E.B. Caldona, J.M.C. Albayalde, A.M.P. Aglosolos, K.S. Bautista, M.D. Tavora, S.A.P. Cabalza, J.R.O. Diaz, M.D. Mulato, Titania-containing recycled polypropylene surfaces with photo-induced reversible switching wettability. J. Polym. Environ. 27(7), 1564 (2019)

    Article  CAS  Google Scholar 

  7. A. Peacock, Handbook of Polyethylene: Structures: Properties, and Applications (CRC Press, Boca Raton, 2000)

    Book  Google Scholar 

  8. A.-C. Albertsson, S.O. Andersson, S. Karlsson, The mechanism of biodegradation of polyethylene. Polym. Degrad. Stab. 18(1), 73 (1987)

    Article  CAS  Google Scholar 

  9. J.D. Burguillos, E.B. Caldona, Design and development of a novel waste container from HDPE-layered bins. J. King Saud Univ. Eng. Sci. 32(1), 85 (2020)

    Google Scholar 

  10. N. Pasquini, A. Addeo, Polypropylene Handbook (Hanser Publishers, Munich, 2005)

    Google Scholar 

  11. G. Natta, P. Corradini, Stereospecific Polymers (Elsevier, Amsterdam, 1967), pp.743–746

    Book  Google Scholar 

  12. P. Choi, W. Mattice, Molecular origin of demixing, prior to crystallization, of atactic polypropylene/isotactic polypropylene blends upon cooling from the melt. J. Chem. Phys. 121, 8647 (2004)

    Article  CAS  Google Scholar 

  13. J. Chen, F. Tsai, Y. Nien, P. Yeh, Isothermal crystallization of isotactic polypropylene blended with low molecular weight atactic polypropylene Part I. Thermal properties and morphology development. Polymer 46(15), 5680 (2005)

    Article  CAS  Google Scholar 

  14. A. Dawood, B.M. Marti, V. Sauret-Jackson, A. Darwood, 3D printing in dentistry. Br. Dent. J. 219(11), 521 (2015)

    Article  CAS  Google Scholar 

  15. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review. J. Eur. Ceram. Soc. 39(4), 661 (2019)

    Article  CAS  Google Scholar 

  16. N. Shahrubudin, T.C. Lee, R. Ramlan, An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 35, 1286 (2019)

    Article  Google Scholar 

  17. R.C. Advincula, J.R.C. Dizon, E.B. Caldona, R.A. Viers, F.D.C. Siacor, R.D. Maalihan, A.H. Espera, On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 11(5), 539 (2021)

    Article  CAS  Google Scholar 

  18. J.R.H.S. Agueda, Q. Chen, R.D. Maalihan, J. Ren, Í.G. da Silva, N.P. Dugos, E.B. Caldona, R.C. Advincula, 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. 11, 197 (2021)

    Article  Google Scholar 

  19. A.C.C. de Leon, Í.G. da Silva, K.D. Pangilinan, Q. Chen, E.B. Caldona, R.C. Advincula, High performance polymers for oil and gas applications. React. Funct. Polym. 162, 104878 (2021)

    Article  Google Scholar 

  20. D.B. Gutierrez, E.B. Caldona, R.D. Espiritu, R.C. Advincula, The potential of additively manufactured membranes for selective separation and capture of CO2. MRS Commun. 11(4), 391 (2021)

    Article  CAS  Google Scholar 

  21. Q. Chen, J.D. Mangadlao, J. Wallat, A. De Leon, J.K. Pokorski, R.C. Advincula, 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9(4), 4015 (2017)

    Article  CAS  Google Scholar 

  22. A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R.C. Advincula, High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141 (2016)

    Article  Google Scholar 

  23. V.S. Voet, T. Strating, G.H. Schnelting, P. Dijkstra, M. Tietema, J. Xu, A.J. Woortman, K. Loos, J. Jager, R. Folkersma, Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega 3(2), 1403 (2018)

    Article  CAS  Google Scholar 

  24. J.Z. Manapat, Q. Chen, P. Ye, R.C. Advincula, 3D printing of polymer nanocomposites via stereolithography. Macromol. Mater. Eng. 302(9), 1600553 (2017)

    Article  Google Scholar 

  25. R.D. Maalihan, Q. Chen, J.R.H.S. Agueda, B.B. Pajarito, H. Tamura, R.C. Advincula, On the use of surfactant-complexed chitosan for toughening 3D printed polymethacrylate composites. Macromol. Mater. Eng. 306(1), 2000448 (2021)

    Article  CAS  Google Scholar 

  26. X. Wan, L. Luo, Y. Liu, J. Leng, Direct ink writing based 4D printing of materials and their applications. Adv. Sci. 7(16), 2001000 (2020)

    Article  CAS  Google Scholar 

  27. Q. Chen, P. Cao, R.C. Advincula, Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Adv. Funct. Mater. 28(21), 1800631 (2018)

    Article  Google Scholar 

  28. Q. Chen, J. Zhao, J. Ren, L. Rong, P. Cao, R.C. Advincula, 3D printed multifunctional, hyperelastic silicone rubber foam. Adv. Funct. Mater. 29(23), 1900469 (2019)

    Article  Google Scholar 

  29. A. Awad, F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int. J. Pharm. 586, 119594 (2020)

    Article  CAS  Google Scholar 

  30. A.H. Espera Jr., A.D. Valino, J.O. Palaganas, L. Souza, Q. Chen, R.C. Advincula, 3D Printing of a robust polyamide-12-carbon black composite via selective laser sintering: thermal and electrical conductivity. Macromol. Mater. Eng. 304(4), 1800718 (2019)

    Article  Google Scholar 

  31. L. Wu, Z. Dong, F. Li, H. Zhou, Y. Song, Emerging progress of inkjet technology in printing optical materials. Adv. Opt. Mater. 4(12), 1915 (2016)

    Article  CAS  Google Scholar 

  32. A.D. Valino, J.R.C. Dizon, A.H. Espera Jr., Q. Chen, J. Messman, R.C. Advincula, Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 98, 101162 (2019)

    Article  CAS  Google Scholar 

  33. J.R.C. Dizon, A.H. Espera Jr., Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44 (2018)

    CAS  Google Scholar 

  34. A. Gudadhe, N. Bachhar, A. Kumar, P. Andrade, G. Kumaraswamy, Three-dimensional printing with waste high-density polyethylene. ACS Appl. Polym. Mater. 1(11), 3157 (2019)

    Article  CAS  Google Scholar 

  35. D. Filgueira, S. Holmen, J.K. Melbø, D. Moldes, A.T. Echtermeyer, G. Chinga-Carrasco, 3D printable filaments made of biobased polyethylene biocomposites. Polymers 10(3), 314 (2018)

    Article  Google Scholar 

  36. C. Minogianni, K.G. Gatos, C. Galiotis, Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy. Appl. Spectrosc. 59(9), 1141 (2005)

    Article  CAS  Google Scholar 

  37. K. Lau, P. Hung, M.-H. Zhu, D. Hui, Properties of natural fibre composites for structural engineering applications. Composite B 136, 222 (2018)

    Article  CAS  Google Scholar 

  38. F.D.C. Siacor, Q. Chen, J.Y. Zhao, L. Han, A.D. Valino, E.B. Taboada, E.B. Caldona, R.C. Advincula, On the additive manufacturing (3D printing) of viscoelastic materials and flow behavior: from composites to food manufacturing. Addit. Manuf. 45, 102043 (2021)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Governor’s Chair Funds, the University of Tennessee System, and the Center for Materials Processing (CMP)-TCE. Technical support from Malvern Panalytical, Frontier Laboratories and Quantum Analytics are also acknowledged. Work (or part of this work) was conducted by ORNL’s Center for Nanophase Materials and Sciences by RCA, a US Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto C. Advincula.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rigoberto C. Advincula was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2377 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moczadlo, M., Chen, Q., Cheng, X. et al. On the 3D printing of polypropylene and post-processing optimization of thermomechanical properties. MRS Communications 13, 169–176 (2023). https://doi.org/10.1557/s43579-023-00329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00329-2

Keywords

Navigation