Skip to main content
Log in

Preparation of new multi-composition oxide glasses with high refractive index by containerless solidification

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Multi-composition La2O3–TiO2–Nb2O5–ZrO2–Gd2O3 (LTNZG) glasses with high refractive index were successfully prepared using containerless processing technology. The effect of Gd2O3 substitution on the structural, thermal, mechanical and optical properties of LTNZG glasses were investigated for the first time. The thermal stability, hardness and refractive index of the glass increases as the amount of Gd2O3 substitution increases, with the maximum refractive index nd = 2.255, and the transmittance still remains around 70%. The above results show that as the Gd2O3 content increases the glass exhibits excellent comprehensive performance and is expected to become important material for the development of modern optical components.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Zhang, X. Zhang, X. Qi, Thermal and optical properties of (25–x)LaO3/2–25TiO2–25NbO5/2–25WO3–xZrO2 glasses with high refractive indices prepared by aerodynamic levitation method. Opt. Mater. 125, 111811 (2022). https://doi.org/10.1016/j.optmat.2021.111811

    Article  CAS  Google Scholar 

  2. Z. Mao, C. Wang, X. Zheng, Optical properties, thermal stability, and forming region of high refractive index La2O3–TiO2–Nb2O5 glasses. J. Am. Ceram. Soc. 101(4), 1500–1507 (2018). https://doi.org/10.1111/jace.15316

    Article  CAS  Google Scholar 

  3. M.R. Zaki, D. Hamani, Structural investigation of new tellurite glasses belonging to the TeO2–NbO2.5–WO3 system, and a study of their linear and nonlinear optical properties. J. Noncryst. Solids 512, 161–173 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.027

    Article  CAS  Google Scholar 

  4. N.V. Ovcharenko, T.V. Smirnova, High refractive index and magneto-optical glasses in the systems TeO2–WO3–Bi2O3 and TeO2–WO3–PbO. J. Noncryst. Solids 291(1–2), 121–126 (2001). https://doi.org/10.1016/S0022-3093(01)00793-1

    Article  CAS  Google Scholar 

  5. M.R. Zaki, D. Hamani, Synthesis, thermal, structural and linear optical properties of new glasses within the TeO2–TiO2–WO3 system. J. Noncryst. Solids 484, 139–148 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.034

    Article  CAS  Google Scholar 

  6. X. Ma, Z. Peng, J. Li, Effect of Ta2O5 substituting on thermal and optical properties of high refractive index La2O3–Nb2O5 glass system prepared by aerodynamic levitation method. J. Am. Ceram. Soc. 98(3), 770–773 (2015). https://doi.org/10.1111/jace.13384

    Article  CAS  Google Scholar 

  7. K. Yoshimoto, A. Masuno, M. Ueda, Thermal and optical properties of La2O3–Ga2O3–(Nb2O5 or Ta2O5) ternary glasses. J. Am. Ceram. Soc. 101(8), 3328–3336 (2018). https://doi.org/10.1111/jace.15484

    Article  CAS  Google Scholar 

  8. T. Xu, Q. Li, Y. Shi, The enhancement of hardness and anti-corrosion of ZrO2 to the LaO3/2–AlO3/2–ZrO2 glasses. J. Noncryst. Solids 572, 121118 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121118

    Article  CAS  Google Scholar 

  9. Y. Li, X. Zhang, X. Qi, High refractive index LaGaO3–TiO2 amorphous spheres prepared by containerless solidification. Mater. Lett. 215, 148–151 (2018). https://doi.org/10.1016/j.matlet.2017.12.085

    Article  CAS  Google Scholar 

  10. J. Zhang, X. Zhang, Y. Li, High-entropy oxides 10La2O3–20TiO2–10Nb2O5–20WO3–20ZrO2 amorphous spheres prepared by containerless solidification. Mater. Lett. 244, 167–170 (2019). https://doi.org/10.1016/j.matlet.2019.01.017

    Article  CAS  Google Scholar 

  11. H. Xiang, L. Guan, J. Li, Preparation of high refractive index La2O3–TiO2 glass by aerodynamic levitation technique and effects of Bi2O3 substitution on its thermal and optical properties. Ceram. Int. 40(3), 4985–4988 (2014). https://doi.org/10.1016/j.ceramint.2013.10.014

    Article  CAS  Google Scholar 

  12. J. Yang, J. Li, P. Lu, Understanding the structure, thermal, and optical properties in Al2O3-incorporated La2O3–TiO2–Nb2O5 glasses. J. Am. Ceram. Soc. 104(6), 2539–2551 (2021). https://doi.org/10.1111/jace.17698

    Article  CAS  Google Scholar 

  13. A. Masuno, Y. Watanabe, H. Inoue, Glass-forming region and high refractive index of TiO2-based glasses prepared by containerless processing. Phys. Status Solidi 9(12), 2424–2427 (2012). https://doi.org/10.1002/pssc.201200313

    Article  CAS  Google Scholar 

  14. M. Ordu, J. Guo, Effect of thermal annealing on mid-infrared transmission in semiconductor alloy-core glass-cladded fibers. Adv. Fiber Mater. 2, 178–184 (2020). https://doi.org/10.1007/s42765-020-00030-2

    Article  CAS  Google Scholar 

  15. X. Zhang, J. Zhang, Ch. Zhou, High refractive index of Eu3+ doped La2O3–TiO2–Nb2O5–WO3 oxide glasses with low wavelength dispersion. J. Noncryst. Solids 581, 1212281 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121228

    Article  CAS  Google Scholar 

  16. K. Kato, A. Masuno, H. Inoue, Containerless solidification of undercooled SrO–Al2O3 binary melts. Phys. Chem. Chem. Phys. 17(9), 6495–6500 (2015). https://doi.org/10.1039/C4CP05861E

    Article  CAS  Google Scholar 

  17. M. Zhang, H. Wen, X. Pan, Study on novel high refractive index La2O3–Lu2O3–TiO2 glasses prepared by aerodynamic levitation method. Mater. Lett. 222, 5–7 (2018). https://doi.org/10.1016/j.matlet.2018.03.120

    Article  CAS  Google Scholar 

  18. T. Xu, W. Lv, Q. Li, Y. Shi, Anti-corrosion LaO3/2–GaO3/2–ZrO2 infrared glasses with high refractive index and low dispersion prepared by aerodynamic levitation. Opt. Mater. 114, 110943 (2021). https://doi.org/10.1016/j.optmat.2021.110943

    Article  CAS  Google Scholar 

  19. Y. Lia, G. Yang, Y. Guo, Glass-forming ability of LaAlO3–Nb2O5 amorphous spheres with high refractive indices and hardnesses prepared by an aerodynamic levitation furnace. Mater. Res. Express 6(7), 075201 (2019)

    Article  Google Scholar 

  20. Y. Guo, J. Li, Y. Zhang, High-entropy R2O3–Y2O3–TiO2–ZrO2–Al2O3 glasses with ultrahigh hardness, Young’s modulus and indentation fracture toughness. iScience 24(7), 102735 (2021). https://doi.org/10.1016/j.isci.2021.102735

    Article  CAS  Google Scholar 

  21. C. Cheng, H. Li, Q. Fu, L. Guo, Effect of Zr doping on the high-temperature stability of SiO2 glass. Comput. Mater. Sci. 147, 81–86 (2018). https://doi.org/10.1016/j.commatsci.2018.01.051

    Article  CAS  Google Scholar 

  22. S. Sasaki, A. Masuno, Composition dependence of the local structure and transparency of Gd2O3–B2O3 binary glasses prepared via aerodynamic levitation. J. Ceram. Soc. Jpn 130(1), 60–64 (2022). https://doi.org/10.2109/jcersj2.21124

    Article  CAS  Google Scholar 

  23. G. Kilic, E. Ilik, A.M. Shams, Synthesis and structural, optical, physical properties of gadolinium(III) oxide reinforced TeO2–B2O3–(20–x)Li2O–xGd2O3 glass system. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160302

    Article  Google Scholar 

  24. Y. Zhou, H. Zheng, S. Zhao, Ch. Zhang, Preparation, structural and mechanical characterization of ceria-added phosphate glasses. J. Noncryst. Solids 570, 120878 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120878

    Article  CAS  Google Scholar 

  25. Y. Zhao, Y. Zhou, J. Yang, Y. Li, Optimized structural and mechanical properties of borophosphate glass. Ceram. Int. 46(7), 9025–9029 (2020)

    Article  CAS  Google Scholar 

  26. R. Oueslati-Omrani, A.H. Hamzaoui, Effect of ZnO incorporation on the structural, thermal and optical properties of phosphate based silicate glasses. Mater. Chem. Phys. 242, 122461 (2020). https://doi.org/10.1016/j.matchemphys.2019.122461

    Article  CAS  Google Scholar 

  27. J.D.M. Diasa, G.H.A. Meloab, T.A. Lodia, J.O. Carvalhoac, Thermal and structural properties of Nd2O3-doped calcium boroaluminate glasses. J. Rare Earths 34(5), 521–528 (2016). https://doi.org/10.1016/S1002-0721(16)60057-1

    Article  CAS  Google Scholar 

  28. J.E. Neely, J.D. Mackenzie, Hardness and low-temperature deformation of silica glass. J. Mater. Sci. 3, 603–609 (1968)

    Article  CAS  Google Scholar 

  29. Y. Wang, M. Zhang, J. Xie, Optical temperature sensing performance of Er3+/Yb3+ co-doped TiO2–ZrO2–La2O3 glasses. Mater. Res. Express 8, 105201 (2021)

    Article  CAS  Google Scholar 

  30. M. Kasprzyk, M. Środa, Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses. J. Mol. Struct. 1161, 536–543 (2018). https://doi.org/10.1016/j.molstruc.2018.02.076

    Article  CAS  Google Scholar 

  31. S.Y. Marzouk, R. Seoudi, D.A. Said, M.S. Mabrouk, Linear and non-linear optics and FTIR characteristics of borosilicate glasses doped with gadolinium ions. Opt. Mater. 35, 2077–2084 (2013). https://doi.org/10.1016/j.optmat.2013.05.023

    Article  CAS  Google Scholar 

  32. B. Samanta, D. Dutta, S. Ghosh, Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses. Physica B (Amst. Neth.) 515, 82–88 (2017). https://doi.org/10.1016/j.physb.2017.03.036

    Article  CAS  Google Scholar 

  33. S. Hirota, T. Izumitani, Effect of cations on inherent absorption wavelength and oscillator strength of ultraviolet absorptions in borate glasses. J. Noncryst. Solids 29(1), 109–117 (1978). https://doi.org/10.1016/0022-3093(78)90144-8

    Article  CAS  Google Scholar 

  34. M.A. Villegas, J.M.F. Navarro, Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system. J. Eur. Ceram. Soc. 27, 2715–2723 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.12.003

    Article  CAS  Google Scholar 

  35. H. Inoue, Y. Watanabe, A. Masuno, Effect of substituting Al2O3 and ZrO2 on thermal and optical properties of high refractive index La2O3–TiO2 glass system prepared by containerless processing. Opt. Mater. 33(12), 1853–1857 (2011). https://doi.org/10.1016/j.optmat.2011.02.043

    Article  CAS  Google Scholar 

  36. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79(3), 1736–1740 (1996). https://doi.org/10.1016/S0022-3093(01)00481-1

    Article  CAS  Google Scholar 

  37. G. Chandrashekaraiah, V.C. Veeranna Gowda, A. Jayasheelan, Correlation among the oxide ion polarizability, optical basicity and interaction parameter in Gd3+ ions doped oxyhalide borate glasses. Aust. J. Phys. 2070, 012050 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Youth Innovation Promotion Association, Chinese Academy of Sciences (2020256), Science and Technology Committee of Shanghai (19142200400, 20QA1410300, 22511100300), Project supported by the Space Utilization System of China Manned Space Engineering (KJZ-YY-NCL07), Innovation Fund of Shanghai Institute of Ceramics, CAS (E19ZC3130G), Science Research Fund of Shanghai Institute of Ceramics, CAS (E19ZC1990G), Young Talents Cultivation Program of Chinese Academy of Sciences Shanghai Branch, Director Fund of Artificial Crystals Center, SICCAS, Science and Technology Innovation Action Project of Science and Technology Committee of Shanghai (20511107400, 19DZ1100703, 20511107404), National Key Research and Development Program of China (2021YFA0716304), Key Science Equipment Development, Chinese Academy of Sciences (YJKYYQ20190008), Graduate Education Innovation Fund of Wuhan Institute of Technology (CX2022230).

Author information

Authors and Affiliations

Authors

Contributions

All authors checked the manuscript and agreed to its submission. We confirm that this manuscript is the authors’ original work. We confirm that this work has not been published nor is it being submitted simultaneously elsewhere.

Corresponding authors

Correspondence to Hongyang Zhao or Minhui Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Lu, J., Chen, M. et al. Preparation of new multi-composition oxide glasses with high refractive index by containerless solidification. MRS Communications 13, 129–135 (2023). https://doi.org/10.1557/s43579-023-00323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00323-8

Keywords

Navigation