Skip to main content
Log in

Application of machine learning to mechanical properties of copper-graphene composites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Copper-graphene (Cu/Gr) composites have been promising materials due to their theoretically high strength and conductivity; however, their design has been hampered by the large number of variables affecting their properties. We applied four different machine learning (ML) models to manually collected datasets compiling the yield strength and ultimate tensile strength of graphene-reinforced copper composites processed with powder metallurgy techniques. Our results indicate that ML models can predict the mechanical properties of Cu/Gr composites with satisfactory accuracy. Feature analysis provided new insights into the most important factors that affect these properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data availability

Data will be provided by the corresponding author upon request.

References

  1. D. Morgan, R. Jacobs, Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 50, 71–103 (2020). https://doi.org/10.1146/annurev-matsci-070218-010015

    Article  CAS  Google Scholar 

  2. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2

    Article  CAS  Google Scholar 

  3. J. Yeo, G.S. Jung, F.J. Martín-Martínez, S. Ling, G.X. Gu, Z. Qin et al., Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys. Scr. (2018). https://doi.org/10.1088/1402-4896/aab4e2

    Article  Google Scholar 

  4. C.T. Chen, G.X. Gu, Machine learning for composite materials. MRS Communications. (2019.). Available from: https://www.cambridge.org/core/journals/mrs-communications/article/machine-learning-for-composite-materials/F54F60AC0048291BA47E0B671733ED15

  5. A. Kordijazi, T. Zhao, J. Zhang, K. Alrfou, P. Rohatgi, A review of application of machine learning in design, synthesis, and characterization of metal matrix composites: current status and emerging applications. JOM 73, 2060–2074 (2021). https://doi.org/10.1007/s11837-021-04701-2

    Article  CAS  Google Scholar 

  6. A. Kordijazi, S. Behera, D. Patel, P. Rohatgi, M. Nosonovsky, Predictive analysis of wettability of Al–Si based multiphase alloys and aluminum matrix composites by machine learning and physical modeling. Langmuir 37, 3766–3777 (2021). https://doi.org/10.1021/acs.langmuir.1c00358

    Article  CAS  Google Scholar 

  7. A. Kordijazi, H.M. Roshan, A. Dhingra, M. Povolo, P.K. Rohatgi, M. Nosonovsky, Machine-learning methods to predict the wetting properties of iron-based composites. Surf. Innov. 9, 111–119 (2021). https://doi.org/10.1680/jsuin.20.00024

    Article  Google Scholar 

  8. M.S. Hasan, A. Kordijazi, P.K. Rohatgi, M. Nosonovsky, Triboinformatics approach for friction and wear prediction of Al-graphite composites using machine learning methods. J. Tribol. 144, 011701 (2021). https://doi.org/10.1115/1.4050525

    Article  CAS  Google Scholar 

  9. M.S. Hasan, A. Kordijazi, P.K. Rohatgi, M. Nosonovsky, Machine learning models of the transition from solid to liquid lubricated friction and wear in aluminum-graphite composites. Tribol. Int. 165, 107326 (2022). https://doi.org/10.1016/j.triboint.2021.107326

    Article  CAS  Google Scholar 

  10. M.S. Hasan, A. Kordijazi, P.K. Rohatgi, M. Nosonovsky, Application of Triboinformatics Approach in Tribological Studies of Aluminum Alloys and Aluminum-Graphite Metal Matrix Composites. Metal-Matrix Composites (Springer International Publishing, Cham, 2022), pp.41–51. https://doi.org/10.1007/978-3-030-92567-3_3

    Book  Google Scholar 

  11. V. Shah, S. Zadourian, C. Yang, Z. Zhang, G.X. Gu, Data-driven approach for the prediction of mechanical properties of carbon fiber reinforced composites. Mater. Adv. (2022). https://doi.org/10.1039/d2ma00698g

    Article  Google Scholar 

  12. B.A. Young, A. Hall, L. Pilon, P. Gupta, G. Sant, Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 115, 379–388 (2019). https://doi.org/10.1016/j.cemconres.2018.09.006

    Article  CAS  Google Scholar 

  13. H. Sadabadi, O. Ghaderi, A. Kordijazi, P.K. Rohatgi, Graphene derivatives reinforced metal matrix nanocomposite coatings: a review. J. Met. Mate.r Mine. 32, 1–14 (2022). https://doi.org/10.55713/jmmm.v32i3.1518

    Article  CAS  Google Scholar 

  14. P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I.A. Kinloch, R.J. Young, Copper/graphene composites: a review. J. Mater. Sci. 54, 12236–12289 (2019). https://doi.org/10.1007/s10853-019-03703-5

    Article  CAS  Google Scholar 

  15. R. Batra, Accurate machine learning in materials science facilitated by using diverse data sources. Nature 589, 524–525 (2021). https://doi.org/10.1038/d41586-020-03259-4

    Article  CAS  Google Scholar 

  16. A. Pratik, S.K. Biswal, P. Haridoss, Impact of enhanced interfacial strength on physical, mechanical and tribological properties of copper/reduced graphene oxide composites: microstructural investigation. Ceram. Int. 46, 22539–22549 (2020). https://doi.org/10.1016/j.ceramint.2020.06.014

    Article  CAS  Google Scholar 

  17. Y. He, F. Huang, H. Li, Y. Sui, F. Wei, Q. Meng et al., Tensile mechanical properties of nano-layered copper/graphene composite. Physica E 87, 233–236 (2017). https://doi.org/10.1016/j.physe.2016.10.044

    Article  CAS  Google Scholar 

  18. H. Jang, S. Yoo, M. Quevedo, H. Choi, Effect of processing route on mechanical and thermal properties of few-layered graphene (FLG)-reinforced copper matrix composites. J. Alloys Compd. 754, 7–13 (2018). https://doi.org/10.1016/j.jallcom.2018.04.272

    Article  CAS  Google Scholar 

  19. J. Wang, L.-N. Guo, W.-M. Lin, J. Chen, S. Zhang, S. Chen et al., The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites. New Carbon Mater. 34, 161–169 (2019). https://doi.org/10.1016/S1872-5805(19)60009-0

    Article  CAS  Google Scholar 

  20. A.D. Pingale, S.U. Belgamwar, J.S. Rathore, The influence of graphene nanoplatelets (GNPs) addition on the microstructure and mechanical properties of Cu-GNPs composites fabricated by electro-co-deposition and powder metallurgy. Mater. Today: Proc.. 28, 2062–2067 (2020). https://doi.org/10.1016/j.matpr.2020.02.728

    Article  CAS  Google Scholar 

  21. F. Chen, Q.S. Mei, J.Y. Li, C.L. Li, L. Wan, G.D. Zhang et al., Fabrication of graphene/copper nanocomposites via in-situ delamination of graphite in copper by accumulative roll-compositing. Compos. B 216, 108850 (2021). https://doi.org/10.1016/j.compositesb.2021.108850

    Article  CAS  Google Scholar 

  22. S.C. Yoo, J. Lee, S.H. Hong, Synergistic outstanding strengthening behavior of graphene/copper nanocomposites. Compos. B 176, 107235 (2019). https://doi.org/10.1016/j.compositesb.2019.107235

    Article  CAS  Google Scholar 

  23. G. Korznikova, T. Czeppe, G. Khalikova, D. Gunderov, E. Korznikova, L. Litynska-Dobrzynska et al., Microstructure and mechanical properties of Cu-graphene composites produced by two high pressure torsion procedures. Mater. Charact. 161, 110122 (2020). https://doi.org/10.1016/j.matchar.2020.110122

    Article  CAS  Google Scholar 

  24. X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation. Mater. Sci. Eng. A 762, 138063 (2019). https://doi.org/10.1016/j.msea.2019.138063

    Article  CAS  Google Scholar 

  25. V.G. Konakov, O. Yu. Kurapova, E.N. Solovyeva, I.V. Lomakin, I. Yu. Archakov, Synthesis, structure and mechanical properties of bulk “copper-graphene” composites. Rev. Adv. Mater. Sci. 57, 151–157 (2018). https://doi.org/10.1515/rams-2018-0059

    Article  CAS  Google Scholar 

  26. Z. Hu, F. Chen, D. Lin, Q. Nian, P. Parandoush, X. Zhu et al., Laser additive manufacturing bulk graphene–copper nanocomposites. Nanotechnology 28, 445705 (2017). https://doi.org/10.1088/1361-6528/aa8946

    Article  CAS  Google Scholar 

  27. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.-S. Kim, S.H. Hong et al., Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724–6729 (2013). https://doi.org/10.1002/adma.201302495

    Article  CAS  Google Scholar 

  28. X. Zhang, D. Wan, K. Peng, W. Zhang, Enhancement of thermal conductivity and mechanical properties of Cu-reduced graphene oxide composites by interface modification. J. Mater. Eng. Perform. 28, 5165–5171 (2019). https://doi.org/10.1007/s11665-019-04212-x

    Article  CAS  Google Scholar 

  29. X. Li, S. Yan, X. Chen, Q. Hong, N. Wang, Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering. J. Alloys Compd. 834, 155182 (2020). https://doi.org/10.1016/j.jallcom.2020.155182

    Article  CAS  Google Scholar 

  30. K. Chu, Y.-P. Liu, J. Wang, Z.-R. Geng, Y.-B. Li, Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites. Mater. Sci. Eng. A 735, 398–407 (2018). https://doi.org/10.1016/j.msea.2018.08.064

    Article  CAS  Google Scholar 

  31. Y. Tang, X. Yang, R. Wang, M. Li, Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater. Sci. Eng. A 599, 247–254 (2014). https://doi.org/10.1016/j.msea.2014.01.061

    Article  CAS  Google Scholar 

  32. C. Wei, N. Ye, L. Hong, J. Yao, W. Xia, J. Mao et al., Scalable preparation of ultrathin graphene-reinforced copper composite foils with high mechanical properties and excellent heat dissipation. ACS Appl. Mater. Interfaces 13, 21714–21723 (2021). https://doi.org/10.1021/acsami.1c01519

    Article  CAS  Google Scholar 

  33. T. Yang, W. Chen, F. Yan, H. Lv, Y.Q. Fu, Effect of reduced graphene oxides decorated by Ag and Ce on mechanical properties and electrical conductivity of copper matrix composites. Vacuum 183, 109861 (2021). https://doi.org/10.1016/j.vacuum.2020.109861

    Article  CAS  Google Scholar 

  34. S. Li, G. Song, Q. Fu, C. Pan, Preparation of Cu- graphene coating via electroless plating for high mechanical property and corrosive resistance. J. Alloys Compd. 777, 877–885 (2019). https://doi.org/10.1016/j.jallcom.2018.11.031

    Article  CAS  Google Scholar 

  35. G. Shao, P. Liu, K. Zhang, W. Li, X. Chen, F. Ma, Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering. Mater. Sci. Eng. A 739, 329–334 (2019). https://doi.org/10.1016/j.msea.2018.10.067

    Article  CAS  Google Scholar 

  36. K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, S. Liu, Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput. Mater. Sci. 117, 294–299 (2016). https://doi.org/10.1016/j.commatsci.2016.02.007

    Article  CAS  Google Scholar 

  37. K.R.J. Swikker, H. Kanagasabapathy, I.N. Manickam, N.V.P. Nadar, S. Alwin, Effect of sintering temperature on grain growth and mechanical properties of copper/graphene nanosheet composite. Diam. Relat. Mater. 110, 108111 (2020). https://doi.org/10.1016/j.diamond.2020.108111

    Article  CAS  Google Scholar 

  38. F. Nazeer, Z. Ma, L. Gao, F. Wang, M.A. Khan, A. Malik, Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites. Compos. B 163, 77–85 (2019). https://doi.org/10.1016/j.compositesb.2018.11.004

    Article  CAS  Google Scholar 

  39. Z.-R. Hu, R. Dai, D.-N. Wang, X.-N. Wang, F. Chen, X.-L. Fan et al., Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering. New Carbon Mater. 36, 420–428 (2021). https://doi.org/10.1016/S1872-5805(21)60028-8

    Article  CAS  Google Scholar 

  40. H.M. Yehia, F. Nouh, O. El-Kady, Effect of graphene nano-sheets content and sintering time on the microstructure, coefficient of thermal expansion, and mechanical properties of (Cu /WC –TiC-Co) nano-composites. J. Alloys Compd. 764, 36–43 (2018). https://doi.org/10.1016/j.jallcom.2018.06.040

    Article  CAS  Google Scholar 

  41. H. Asgharzadeh, S. Eslami, Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J. Alloys Compd. 806, 553–565 (2019). https://doi.org/10.1016/j.jallcom.2019.07.183

    Article  CAS  Google Scholar 

  42. H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, Y. He, Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles. J. Alloys Compd. 729, 293–302 (2017). https://doi.org/10.1016/j.jallcom.2017.09.102

    Article  CAS  Google Scholar 

  43. V.G. Konakov, O.Y. Kurapova, I.Y. Archakov, Improvement of copper-graphene composites properties due to the lubricating effect of graphene in the powder metallurgy fabrication process. Met. Mater. Int. 26, 1899–1907 (2020). https://doi.org/10.1007/s12540-019-00456-3

    Article  CAS  Google Scholar 

  44. R. Shu, X. Jiang, Z. Shao, D. Sun, D. Zhu, Z. Luo, Fabrication and mechanical properties of MWCNTs and graphene synergetically reinforced Cu–graphite matrix composites. Powder Technol. 349, 59–69 (2019). https://doi.org/10.1016/j.powtec.2019.03.021

    Article  CAS  Google Scholar 

  45. K. Chu, C. Jia, Enhanced strength in bulk graphene-copper composites. Phys. Status Solidi 211, 184–190 (2014). https://doi.org/10.1002/pssa.201330051

    Article  CAS  Google Scholar 

  46. X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites. ACS Appl. Mater. Interfaces 10, 37586–37601 (2018). https://doi.org/10.1021/acsami.8b09799

    Article  CAS  Google Scholar 

  47. X. He, G. Zou, Y. Xu, H. Zhu, H. Jiang, X. Jiang et al., Nano-mechanical and tribological properties of copper matrix composites reinforced by graphene nanosheets. Prog. Nat. Sci. Mater. Int. 28, 416–421 (2018). https://doi.org/10.1016/j.pnsc.2018.04.014

    Article  CAS  Google Scholar 

  48. X. Zhao, J. Tang, F. Yu, N. Ye, Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition. J. Alloys Compd. 766, 266–273 (2018). https://doi.org/10.1016/j.jallcom.2018.06.309

    Article  CAS  Google Scholar 

  49. M.-X. Li, J. Xie, Y.-D. Li, H.-H. Xu, Reduced graphene oxide dispersed in copper matrix composites: facile preparation and enhanced mechanical properties. Phys. Status Solidi 212, 2154–2161 (2015). https://doi.org/10.1002/pssa.201532038

    Article  CAS  Google Scholar 

  50. W.J. Kim, T.J. Lee, S.H. Han, Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon N. Y. 69, 55–65 (2014). https://doi.org/10.1016/j.carbon.2013.11.058

    Article  CAS  Google Scholar 

  51. K. Chu, J. Wang, Y.-P. Liu, Z.-R. Geng, Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites. Carbon N .Y. 140, 112–123 (2018). https://doi.org/10.1016/j.carbon.2018.08.004

    Article  CAS  Google Scholar 

  52. X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao et al., Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol. 301, 601–607 (2016). https://doi.org/10.1016/j.powtec.2016.06.045

    Article  CAS  Google Scholar 

  53. A. Géron, Hands-on machine learning with scikit-learn, keras, and tensorflow: concepts, tools, and techniques to build intelligent systems. “O’Reilly Media, Inc.”; (2019). Available from: https://play.google.com/store/books/details?id=HnetDwAAQBAJ

Download references

Acknowledgments

Nothing to report.

Funding

Nothing to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kordijazi.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohatgi, M., Kordijazi, A. Application of machine learning to mechanical properties of copper-graphene composites. MRS Communications 13, 111–116 (2023). https://doi.org/10.1557/s43579-023-00320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00320-x

Keywords

Navigation