Skip to main content
Log in

On the 3D printability of silicone-based adhesives via viscous paste extrusion

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Silicone, a commonly used household and construction adhesive, filler, or sealant, is also known for its flexibility, thermal stability, and insulating properties. It is viable as a conformally 3D-printed elastomeric matrix for flexible electronics and biomedical applications. Since most of the popular 3D printing methods use precise print specifications and defined resolution, this study explored the 3D printability of commercial silicone adhesives via a paste extrusion setup. Its viscoelastic and composition properties including the dimensional accuracy and mechanical properties of printed objects using controlled print parameters have been investigated. These experimental processes in 3D printing should pave the way in using materials originally intended for household use.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author.

References

  1. H.-H. Moretto, M. Schulze, G. Wagner, “Silicones”, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim (Wiley-VCH GmbH & Co. KGaA, Weinheim, 2000)

    Google Scholar 

  2. F. DeBuyl, Silicone sealants and structural adhesives. Int. J. Adhes. Adhes. 21(5), 411 (2001). https://doi.org/10.1016/S0143-7496(01)00018-5

    Article  CAS  Google Scholar 

  3. M.G. Li, X.Y. Tian, X.B. Chen, A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction. Biofabrication 1, 3 (2009). https://doi.org/10.1088/1758-5082/1/3/032001

    Article  CAS  Google Scholar 

  4. F. Liravi, R. Darleux, E. Toyserkani, Additive manufacturing of 3D structures with non-Newtonian highly viscous fluids: finite element modeling and experimental validation. Addit. Manuf. 13, 113 (2017). https://doi.org/10.1016/j.addma.2016.10.008

    Article  CAS  Google Scholar 

  5. S.V. Murphy, A. Atala, A3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773 (2014). https://doi.org/10.1038/nbt.2958

    Article  CAS  Google Scholar 

  6. F. Liravi, R. Darleux, E. Toyserkani, Nozzle dispensing additive manufacturing of polysiloxane: dimensional control. Int. J. Rapid Manuf. 5(1), 20 (2015). https://doi.org/10.1504/ijrapidm.2015.073546

    Article  Google Scholar 

  7. G. Vozzi, A. Previti, D. De Rossi, A. Ahluwalia, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering”. Tissue Eng. 8(6), 1089 (2002). https://doi.org/10.1089/107632702320934182

    Article  CAS  Google Scholar 

  8. X.B. Chen, J. Kai, Modeling of positive-displacement fluid dispensing processes. IEEE Trans. Electron. Packag. Manuf. 27(3), 157 (2004). https://doi.org/10.1109/TEPM.2004.843083

    Article  Google Scholar 

  9. V. Ozbolat, M. Dey, B. Ayan, A. Povilianskas, M.C. Demirel, I.T. Ozbolat, 3D printing of PDMS improves its mechanical and cell adhesion properties. ACS Biomater. Sci. Eng. 4(2), 682 (2018). https://doi.org/10.1021/ACSBIOMATERIALS.7B00646/SUPPL_FILE/AB7B00646_SI_002.AVI

    Article  CAS  Google Scholar 

  10. R. Zheng, Y. Chen, H. Chi, H. Qiu, H. Xue, H. Bai, 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 12(51), 57441 (2020). https://doi.org/10.1021/ACSAMI.0C18201/SUPPL_FILE/AM0C18201_SI_003.MP4

    Article  CAS  Google Scholar 

  11. T. Ching, Y. Li, R. Karyappa, A. Ohno, Y.C. Toh, M. Hashimoto, Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Sens. Actuators B 297, 126609 (2019). https://doi.org/10.1016/J.SNB.2019.05.086

    Article  CAS  Google Scholar 

  12. E.F.D. Nordson, SmoothFlowTM Tapered Tips. https://www.nordson.com/en/divisions/efd/products/dispense-tips/tapered-tips. Accessed 13 Feb 2021.

  13. J.R.C. Dizon, A.D. Valino, L.R. Souza, A.H. Espera, Q. Chen, R.C. Advincula, 3D printed injection molds using various 3D printing technologies. Mater. Sci. Forum 1005, 150 (2020)

    Article  Google Scholar 

  14. J. R. C. Dizon, A. D. Valino, L. R. Souza, A. H. Espera, Q. Chen, and R. C. Advincula, “Three-dimensional-printed molds and materials for injection molding and rapid tooling applications,” MRS Commun. 9, Issue 4, 1, (2019) doi: https://doi.org/10.1557/mrc.2019.147.

  15. W. Chen et al., Direct metal writing: controlling the rheology through microstructure”. Appl. Phys. Lett. 110(9), 094104 (2017). https://doi.org/10.1063/1.4977555

    Article  CAS  Google Scholar 

  16. J. Zhong, G.-X. Zhou, P.-G. He, Z.-H. Yang, D.-C. Jia, 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 117, 421 (2017). https://doi.org/10.1016/j.carbon.2017.02.102

    Article  CAS  Google Scholar 

  17. M.C. Li et al., Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind. Eng. Chem. Res. 55(1), 133 (2016). https://doi.org/10.1021/acs.iecr.5b03510

    Article  CAS  Google Scholar 

  18. N.A. Sukindar, M.K.A. Ariffin, B.T.H.T. Baharudin, C.N.A. Jaafar, M.I.S. Ismail, Analyzing the effect of nozzle diameter in fused deposition modeling for extruding polylactic acid using open source 3D printing. J. Teknol. 78(10), 7 (2016). https://doi.org/10.11113/jt.v78.6265

    Article  Google Scholar 

  19. H.S. Ramanath, C.K. Chua, K.F. Leong, K.D. Shah, Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J. Mater. Sci. 19(7), 2541 (2008). https://doi.org/10.1007/s10856-007-3203-6

    Article  CAS  Google Scholar 

  20. J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44 (2018). https://doi.org/10.1016/j.addma.2017.12.002

    Article  CAS  Google Scholar 

  21. A.H. Espera, A.D. Valino, J.O. Palaganas, L. Souza, Q. Chen, R.C. Advincula, A 3D printing of a robust polyamide-12-carbon black composite via selective laser sintering: thermal and electrical conductivity. Macromol. Mater. Eng. 34(4), 1800718 (2019). https://doi.org/10.1002/mame.201800718

    Article  CAS  Google Scholar 

  22. A.C. de Leon et al., Plastic metal-free electric motor by 3d printing of graphene-polyamide powder. ACS Appl. Energy Mater. 1(4), 1726 (2018). https://doi.org/10.1021/acsaem.8b00240

    Article  CAS  Google Scholar 

  23. Y. Tlegenov, G.S. Hong, W.F. Lu, Nozzle condition monitoring in 3D printing. Robot. Comput. Integr. Manuf. 54, 45 (2018). https://doi.org/10.1016/j.rcim.2018.05.010

    Article  Google Scholar 

  24. S. Zhu, M.A. Stieger, A.J. van der Goot, M.A.I. Schutyser, Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behaviour. Innov. Food Sci. Emerg. Technol. 58, 102214 (2019). https://doi.org/10.1016/j.ifset.2019.102214

    Article  CAS  Google Scholar 

  25. I.J. Solomon, P. Sevvel, J. Gunasekaran, A review on the various processing parameters in FDM. Mater. Today Proc. 37, 509 (2021). https://doi.org/10.1016/j.matpr.2020.05.484

    Article  CAS  Google Scholar 

  26. J. Triyono, A. Nurzengky, H. Sukanto, Y. Nugroho, Z. Jin, The effect of extruder pressure of 3D bioprinter on hardness and compressive of scaffold bovine hydroxyapatite. Cogent Eng. 6(1), 1586812 (2019). https://doi.org/10.1080/23311916.2019.1586812

    Article  Google Scholar 

  27. Q. Chen, J. Zhao, J. Ren, L. Rong, P. Cao, R.C. Advincula, 3D printed multifunctional, hyperelastic silicone rubber foam. Adv. Funct. Mater. 29(23), 1900469 (2019). https://doi.org/10.1002/adfm.201900469

    Article  CAS  Google Scholar 

  28. A.S. Wu et al., 3D printed silicones with shape memory. Sci. Rep. 7(1), 4664 (2017). https://doi.org/10.1038/s41598-017-04663-z

    Article  CAS  Google Scholar 

  29. N.J. Holzman, 3D Printing and Mechanical Performance of Silicone Elastomers. Retrieved from the University of Minnesota Digital Conservancy. https://hdl.handle.net/11299/211309 (2019).

  30. A.H. Espera, J.R.C. Dizon, Q. Chen, R.C. Advincula, 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf. 4, 245 (2019). https://doi.org/10.1007/s40964-019-00077,2019

    Article  Google Scholar 

  31. V. Dikshit, G.D. Goh, A.P. Nagalingam, G.L. Goh, W.Y. Yeong, Recent progress in 3D printing of fiber-reinforced composite and nanocomposites. Fiber Reinforc. Nanocompos. 371, 2020 (2020)

    Google Scholar 

  32. E. Luis, H.M. Pan, S.L. Sing, A.K. Bastola, G.D. Goh, G.L. Goh, Silicone 3D printing: process optimization, product biocompatibility, and reliability of silicone meniscus implants. 3D Print. Addit. Manuf. 6(6), 319 (2019)

    Article  Google Scholar 

  33. A. Menon, B. Póczos, A.W. Feinberg, N.R. Washburn, Optimization of silicone 3D printing with hierarchical machine learning. Print. Addit. Manuf. 6(4), 181 (2019)

    Article  Google Scholar 

  34. L.Y. Zhou, Q. Gao, J.Z. Fu, Q.Y. Chen, J.P. Zhu, Y. Sun, Y. He, Multimaterial 3D printing of highly stretchable silicone elastomers. ACS Appl. Mater. Interfaces 11(26), 23573 (2019)

    Article  CAS  Google Scholar 

  35. E. Caldona, J.R.C. Dizon, A.H. Espera, R.C. Advincula, On the economic, environmental, and sustainability aspects of 3D printing toward a cyclic economy, in Energy Transition: Climate Action and Circularity. ed. by P.J. Boul (ACS, Washington, DC, 2022), p.507

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Case Western Reserve University and the Department of Science and Technology—Philippine Council for Industry, Energy and Emerging Technology Research and Development (DOST-PCIEERD) for the support grant that fueled our research efforts on the area of additive manufacturing. The authors also gratefully acknowledge funding from the Governor’s Chair Funds, University of Tennessee system and the Center for Materials Processing (CMP)-TCE. Technical support from Malvern Panalytical, Frontier Laboratories and Quantum Analytics is gratefully acknowledged. Part of this work was conducted by ORNL’s Center for Nanophase Materials Sciences by R.C. Advincula, which is a US Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto C. Advincula.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rigoberto C. Advincula was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 951 KB).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espera, A.H., Dizon, J.R.C., Valino, A.D. et al. On the 3D printability of silicone-based adhesives via viscous paste extrusion. MRS Communications 13, 102–110 (2023). https://doi.org/10.1557/s43579-022-00318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00318-x

Navigation