Skip to main content
Log in

4D scanning transmission electron microscopy (4D-STEM) reveals crystallization mechanisms of organic semiconductors on graphene

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Organic semiconductor materials exhibit properties that enable use in various electrical devices, such as organic solar cells and field-effect transistors. It is challenging, however, to control molecular packing at organic–organic interfaces and also characterize the morphology at buried interlayers. Here, we demonstrate via vertical physical vapor transport the ability to grow single-crystalline bilayer organic semiconductors on graphene using two small molecules: zinc phthalocyanine (ZnPc), and 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA). We employ 4D-scanning transmission electron diffraction (4D-STEM) to directly observe the orientation distribution of ZnPc and PTCDA crystallites on graphene, explaining the different growth mechanisms of organic molecules on graphene substrates, and we predict the morphology of the stacked ZnPc/PTCDA heterojunctions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Analyzed and raw data relevant to this study are available from the corresponding authors upon reasonable requests.

References

  1. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005)

    Article  CAS  Google Scholar 

  2. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987)

    Article  CAS  Google Scholar 

  3. J. Zaumseil, H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296 (2007)

    Article  CAS  Google Scholar 

  4. J.M. Adhikari, M.R. Gadinski, Q. Li, K.G. Sun, M.A. Reyes-Martinez, E. Iagodkine, A.L. Briseno, T.N. Jackson, Q. Wang, E.D. Gomez, Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal field-effect transistors. Adv. Mater. 28, 10095 (2016)

    Article  CAS  Google Scholar 

  5. Y. Dong, V.C. Nikolis, F. Talnack, Y.-C. Chin, J. Benduhn, G. Londi, J. Kublitski, X. Zheng, S.C.B. Mannsfeld, D. Spoltore, L. Muccioli, J. Li, X. Blase, D. Beljonne, J.-S. Kim, A.A. Bakulin, G. D’Avino, J.R. Durrant, K. Vandewal, Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nat. Commun. 11, 4617 (2020)

    Article  Google Scholar 

  6. J.M. Mativetsky, H. Wang, S.S. Lee, L. Whittaker-Brooks, Y.-L. Loo, Face-on stacking and enhanced out-of-plane hole mobility in graphene-templated copper phthalocyanine. Chem. Commun. 50, 5319 (2014)

    Article  CAS  Google Scholar 

  7. D.L. Gonzalez Arellano, K.W. Kolewe, V.K. Champagne, I.S. Kurtz, E.K. Burnett, J.A. Zakashansky, F.D. Arisoy, A.L. Briseno, J.D. Schiffman, Gecko-inspired biocidal organic nanocrystals initiated from a pencil-drawn graphite template. Sci. Rep. 8, 11618 (2018)

    Article  Google Scholar 

  8. Y. Zhang, Y. Diao, H. Lee, T.J. Mirabito, R.W. Johnson, E. Puodziukynaite, J. John, K.R. Carter, T. Emrick, S.C.B. Mannsfeld, A.L. Briseno, Intrinsic and extrinsic parameters for controlling the growth of organic single-crystalline nanopillars in photovoltaics. Nano Lett. 14, 5547 (2014)

    Article  CAS  Google Scholar 

  9. Y. Wang, J.A. Torres, A.Z. Stieg, S. Jiang, M.T. Yeung, Y. Rubin, S. Chaudhuri, X. Duan, R.B. Kaner, Graphene-assisted solution growth of vertically oriented organic semiconducting single crystals. ACS Nano 9, 9486 (2015)

    Article  CAS  Google Scholar 

  10. L. Zhang, S.S. Roy, N.S. Safron, M.J. Shearer, R.M. Jacobberger, V. Saraswat, R.J. Hamers, M.S. Arnold, T.L. Andrew, Orientation control of selected organic semiconductor crystals achieved by monolayer graphene templates. Adv. Mater. Interfaces 3, 1600621 (2016)

    Article  Google Scholar 

  11. D.L. Gonzalez Arellano, E.K. Burnett, S. DemirciUzun, J.A. Zakashansky, V.K. Champagne, M. George, S.C.B. Mannsfeld, A.L. Briseno, Phase transition of graphene-templated vertical zinc phthalocyanine nanopillars. J. Am. Chem. Soc. 140, 8185 (2018)

    Article  CAS  Google Scholar 

  12. K. Xiao, W. Deng, J.K. Keum, M. Yoon, I.V. Vlassiouk, K.W. Clark, A.-P. Li, I.I. Kravchenko, G. Gu, E.A. Payzant, B.G. Sumpter, S.C. Smith, J.F. Browning, D.B. Geohegan, Surface-induced orientation control of CuPc molecules for the epitaxial growth of highly ordered organic crystals on graphene. J. Am. Chem. Soc. 135, 3680 (2013)

    Article  CAS  Google Scholar 

  13. B. Kuei, E.D. Gomez, Elucidating mechanisms for electron beam damage in conjugated polymers. Microsc. Microanal. 24, 1988 (2018)

    Article  Google Scholar 

  14. B. Kuei, M.P. Aplan, J.H. Litofsky, E.D. Gomez, New opportunities in transmission electron microscopy of polymers. Mater. Sci. Eng. R 139, 100516 (2020)

    Article  Google Scholar 

  15. K.C. Bustillo, S.E. Zeltmann, M. Chen, J. Donohue, J. Ciston, C. Ophus, A.M. Minor, 4D-STEM of beam-sensitive materials. Acc. Chem. Res. 54, 2543 (2021)

    Article  CAS  Google Scholar 

  16. T. Mirabito, B. Huet, A.L. Briseno, D.W. Snyder, Physical vapor deposition of zinc phthalocyanine nanostructures on oxidized silicon and graphene substrates. J. Cryst. Growth 533, 125484 (2020)

    Article  CAS  Google Scholar 

  17. S. Mannsfeld, wxdiff: diffraction image processing and data analysis software (2010)

  18. T.C. Pekin, C. Gammer, J. Ciston, A.M. Minor, C. Ophus, Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping. Ultramicroscopy 176, 170 (2017)

    Article  CAS  Google Scholar 

  19. S. Heutz, R. Cloots, T.S. Jones, Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition. Appl. Phys. Lett. 77, 3938 (2000)

    Article  CAS  Google Scholar 

  20. S. Singha Roy, D.J. Bindl, M.S. Arnold, Templating highly crystalline organic semiconductors using atomic membranes of graphene at the anode/organic interface. J. Phys. Chem. Lett. 3, 873 (2012)

    Article  CAS  Google Scholar 

  21. J.A. Floro, E. Chason, R.C. Cammarata, D.J. Srolovitz, Physical origins of intrinsic stresses in Volmer-Weber thin films. MRS Bull. 27, 19 (2002)

    Article  CAS  Google Scholar 

  22. T. Mirabito, B. Huet, J.M. Redwing, D.W. Snyder, Influence of the underlying substrate on the physical vapor deposition of Zn-phthalocyanine on graphene. ACS Omega 6, 20598 (2021)

    Article  CAS  Google Scholar 

  23. S. Yin, C. Wang, B. Xu, C. Bai, Studies of CuPc adsorption on graphite surface and alkane adlayer. J. Phys. Chem. B 106, 9044 (2002)

    Article  CAS  Google Scholar 

  24. M. Meissner, M. Gruenewald, F. Sojka, C. Udhardt, R. Forker, T. Fritz, Highly ordered growth of PTCDA on epitaxial bilayer graphene. Surf. Sci. 606, 1709 (2012)

    Article  CAS  Google Scholar 

  25. J.D. Emery, Q.H. Wang, M. Zarrouati, P. Fenter, M.C. Hersam, M.J. Bedzyk, Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity. Surf. Sci. 605, 1685 (2011)

    Article  CAS  Google Scholar 

  26. Q.H. Wang, M.C. Hersam, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 1, 206 (2009)

    Article  CAS  Google Scholar 

  27. X.Q. Tian, J.B. Xu, X.M. Wang, Self-assembly of PTCDA ultrathin films on graphene: structural phase transition and charge transfer saturation. J. Phys. Chem. C 114, 20917 (2010)

    Article  CAS  Google Scholar 

  28. H. Huang, S. Chen, X. Gao, W. Chen, A.T.S. Wee, Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano 3, 3431 (2009)

    Article  CAS  Google Scholar 

  29. S. Verlaak, S. Steudel, P. Heremans, D. Janssen, M.S. Deleuze, Nucleation of organic semiconductors on inert substrates. Phys. Rev. B 68, 195409 (2003)

    Article  Google Scholar 

  30. S. Feng, N. Luo, A. Tang, W. Chen, Y. Zhang, S. Huang, W. Dou, Phthalocyanine and metal phthalocyanines adsorbed on graphene: a density functional study. J. Phys. Chem. C 123, 16614 (2019)

    Article  CAS  Google Scholar 

  31. S. Yim, S. Heutz, T.S. Jones, Influence of intermolecular interactions on the structure of phthalocyanine layers in molecular thin film heterostructures. Phys. Rev. B 67, 165308 (2003)

    Article  Google Scholar 

  32. H. Jiang, P. Hu, J. Ye, R. Ganguly, Y. Li, Y. Long, D. Fichou, W. Hu, C. Kloc, Hole mobility modulation in single-crystal metal phthalocyanines by changing the metal–π/π–π interactions. Angew. Chem. Int. Ed. 57, 10112 (2018)

    Article  CAS  Google Scholar 

  33. M. Hirade, H. Nakanotani, M. Yahiro, C. Adachi, Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells. ACS Appl. Mater. Interfaces 3, 80 (2011)

    Article  CAS  Google Scholar 

  34. D. Hong, Y.R. Do, H.T. Kwak, S. Yim, Structural templating and growth behavior of copper phthalocyanine thin films deposited on a polycrystalline perylenetetracarboxylic dianhydride layer. J. Appl. Phys. 109, 063507 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Funding from the Center for Self-Assembled Organic Electronics and the Office of Naval Research under Award N00014-19-1-2453 is acknowledged. Funding is also acknowledged from ARL (US Army)/Design and Synthesis of Materials for Agile Manufacturing under Award 19040007-AWD, with Subaward Number 10730-GR/10747-GR.

Funding

The 4D-STEM work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The X-ray work is based on research conducted at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro L. Briseno or Enrique D. Gomez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1050 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Ophus, C., Bustillo, K.C. et al. 4D scanning transmission electron microscopy (4D-STEM) reveals crystallization mechanisms of organic semiconductors on graphene. MRS Communications 13, 47–54 (2023). https://doi.org/10.1557/s43579-022-00310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00310-5

Keywords

Navigation