Skip to main content

Advertisement

Log in

Ionic gel effect on a reference electrode in a flexible solid-state pH sensor

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A flexible solid-state potentiometric pH sensor was fabricated in a polyimide substrate with and without ionic gel, KCl/agar electrolyte on the reference electrode. Two electrodes system was fabricated, a reference electrode (Ag/AgCl bilayer by E-beam evaporation and submersion into FeCl3) and a working electrode (indium tin oxide by RF sputtering). The ionic gel effect was evaluated by the potentiometric performance, by measuring the open-circuit potential at different pH values (4–10 pH range). Our results show a linear relationship between the sensor signal and pH for both sensors, with sensibilities of sensors ~ 30 (± 1) mV/pH and ~ 56 (± 2) mV/pH, with and without KCl/agar electrolyte, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ITO:

Indium tin oxide

MO:

Metal oxide

SEM:

Scanning electron microscope

EDS:

Energy-dispersive spectroscopy

XRD:

X-ray diffraction

References

  1. D.R. Nanyanzi, G.G. Ocen, T. Omara, F. Bwire, D. Matovu, T. Semwogerere, Design and assembly of a domestic water temperature, pH and turbidity monitoring system. BMC Res. Notes (2021). https://doi.org/10.1186/s13104-021-05578-9

    Article  Google Scholar 

  2. N.A. Ahmad, L.Y. Heng, F. Salam, M.H.M. Zaid, S.A. Hanifah, A colorimetric pH sensor based on Clitoria sp. and Brassica sp. for monitoring of food spoilage using chromametry, Sensors (Switz.) (2019). https://doi.org/10.3390/s19214813

  3. W. Lonsdale, M. Wajrak, K. Alameh, Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages. Talanta (2018). https://doi.org/10.1016/j.talanta.2017.12.070

    Article  Google Scholar 

  4. C. Kabała, E. Musztyfaga, B. Gałka, D. Łabuńska, P. Mańczyńska, Conversion of soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: conclusions for soil management, environmental monitoring, and international soil databases, Pol. J. Environ. Stud. (2016). https://doi.org/10.15244/pjoes/61549

  5. F. Mariani, M. Serafini, I. Gualandi, D. Arcangeli, F. Decataldo, L. Possanzini, M. Tessarolo, D. Tonelli, B. Fraboni, E. Scavetta, Advanced wound dressing for real-time pH monitoring. ACS Sens. (2021). https://doi.org/10.1021/acssensors.1c00552

    Article  Google Scholar 

  6. M. Qin, H. Guo, Z. Dai, X. Yan, X. Ning, Advances in flexible and wearable pH sensors for wound healing monitoring. J. Semicond. (2019). https://doi.org/10.1088/1674-4926/40/11/111607

    Article  Google Scholar 

  7. P. Salvo, V. Dini, A. Kirchhain, A. Janowska, T. Oranges, A. Chiricozzi, T. Lomonaco, F. Di Francesco, M. Romanelli, Sensors and biosensors for C-reactive protein, temperature and pH, and their applications for monitoring wound healing: a review. Sensors (Switz.) (2017). https://doi.org/10.3390/s17122952

    Article  Google Scholar 

  8. S.P. Nischwitz, I. Bernardelli de Mattos, E. Hofmann, F. Groeber-Becker, M. Funk, G.J. Mohr, L.K. Branski, S.I. Mautner, L.P. Kamolz, Continuous pH monitoring in wounds using a composite indicator dressing—a feasibility study. Burns (2019). https://doi.org/10.1016/j.burns.2019.02.021

    Article  Google Scholar 

  9. L. Manjakkal, D. Szwagierczak, R. Dahiya, Metal oxides based electrochemical pH sensors: current progress and future perspectives, Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2019.100635

  10. M. Sophocleous, J.K. Atkinson, A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sens. Actuators A (2017). https://doi.org/10.1016/j.sna.2017.10.013

    Article  Google Scholar 

  11. N. Poma, F. Vivaldi, A. Bonini, N. Carbonaro, F. Di Rienzo, B. Melai, A. Kirchhain, P. Salvo, A. Tognetti, F. Di Francesco, Remote monitoring of seawater temperature and pH by low cost sensors. Microchem. J. (2019). https://doi.org/10.1016/j.microc.2019.05.001

    Article  Google Scholar 

  12. R.S. Azzam, G.B. Azzam, A. Nasi, Wireless pH monitoring and conventional esophageal pH monitoring: comparative study of discomfort, limitations in daily activities and complications. Arq. Bras. Cir. Dig. (2021). https://doi.org/10.1590/0102-672020210001e1566

    Article  Google Scholar 

  13. V.A. Costa, O.M. Pinto-Saavedra, A. Hani, A.M. Leguízamo, A.F. Ardila-Hani, Updated interpretation of impedance-pH monitoring, Rev. Colomb. Gastroenterol. (2021). https://doi.org/10.22516/25007440.608

  14. L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. (2007). https://doi.org/10.1007/s00403-006-0713-x

    Article  Google Scholar 

  15. S.H. Kuo, C.J. Shen, C.F. Shen, C.M. Cheng, Role of pH value in clinically relevant diagnosis. Diagnostics (2020). https://doi.org/10.3390/diagnostics10020107

    Article  Google Scholar 

  16. F. Rippke, E. Berardesca, T.M. Weber, pH and microbial infections. Curr. Probl. Dermatol. (Switz.) (2018). https://doi.org/10.1159/000489522

    Article  Google Scholar 

  17. L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, G. Stojanovic, Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy. J. Electroanal. Chem. 759, 82–90 (2015)

    Article  CAS  Google Scholar 

  18. R.B. Downs, R. Swaminathan, K. Bartelmehs, Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am. Mineral. 78(9–10), 1104–1107 (1993)

    CAS  Google Scholar 

  19. D.V.D. Resnik, B. Pečar, M. Možek, M. Možek, N. Lokar, Formation of thin film Ag/AgCl reference electrode by electrochemical and chemical method. In Proceedings of the International Convention MIPRO, 2019 (2019)

  20. A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005

    Article  CAS  Google Scholar 

  21. T.C. Chou, W.Y. Liao, Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor. Anal. Chem. 78, 4219–4223 (2006)

    Article  Google Scholar 

  22. L. Manjakkal, D. Szwagierczak, R. Dahiya, Metal oxides based electrochemical pH sensors: current progress and future perspectives. Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2019.100635

    Article  Google Scholar 

  23. F. Mazzara, B. Patella, C.D. Agostino, M.G. Bruno, S. Carbone, F. Lopresti, G. Aiello, C. Torino, A. Vilasi, A.O. Riordan, R. Inguanta, PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors 9, 169–182 (2021)

    Article  CAS  Google Scholar 

  24. Q. Li, H. Li, J. Zhang, Z. Xu, A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode. Sens. Actuators B 155, 730–736 (2011)

    Article  CAS  Google Scholar 

  25. M. Qin, H. Guo, Z. Dai, X. Yan, X. Ning, Advances in flexible and wearable pH sensors for wound healing monitoring. Semiconductors 40, 11607–11615 (2019)

    Google Scholar 

  26. C.-E. Lue, I.-S. Wang, C.-H. Huang, Y.-T. Shiao, H.-C. Wang, C.-M. Yang, H. Hsu, C.-Y. Chang, W. Wang, C.-S. Lai, pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process. Microelectron. Reliab. 52, 1651–1654 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CONACYT for funding the research, Project FORDECYT-PRONACES LANITEM (296/2020) and No. 319037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus J. Alcantar-Peña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirado, P., Chavez-Urbiola, I.R. & Alcantar-Peña, J.J. Ionic gel effect on a reference electrode in a flexible solid-state pH sensor. MRS Communications 13, 41–46 (2023). https://doi.org/10.1557/s43579-022-00309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00309-y

Keywords

Navigation