Skip to main content
Log in

Study of solid carbon source-based graphene growth directly on SiO2 substrate with Cu or Cu/Ni as the sacrificial catalysts

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Herein, we report the results of directly synthesizing wafer-scale graphene on silicon dioxide surface using the photoresist based and Cu and Cu/Ni thin-film coating-assisted chemical vapor deposition method. A systematical investigation of the effects of growth condition, such as temperature, time, and metal catalyst layer of Cu and Cu/Ni, on the growth of graphene have been conducted. Multi-layer graphene films are prone to be grown using the Cu/Ni capping layer, while monolayer graphene films are produced using the Cu capping layer. The results demonstrate that such simple method using solid phase photoresist as carbon feedstock can provide a practical route to realize large-scale and mass production of monolayer graphene on dielectric substrate no need of conventional transfer procedure. It sheds a light on future graphene electronic industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.P. Boehm., A. Clauss, G.O. Fischer, U. Hofmann, Dünnste Kohlenstoff-Folien, Zeitschrift für Naturforschung B 17, 150 (1962). https://doi.org/10.1515/znb-1962-0302.

  2. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. Dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007). https://doi.org/10.1103/PhysRevLett.99.216802.

  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109.

  4. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261 (2010). https://doi.org/10.1080/00018732.2010.487978

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  6. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  7. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201 (2005). https://doi.org/10.1038/nature04235.

  8. W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014). https://doi.org/10.1038/nnano.2014.214

    Article  CAS  Google Scholar 

  9. M.M. Glazov, S.D. Ganichev, High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101 (2014). https://doi.org/10.1016/j.physrep.2013.10.003

    Article  CAS  Google Scholar 

  10. M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589 (2015). https://doi.org/10.1039/c5tc01354b

    Article  CAS  Google Scholar 

  11. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Perez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galan, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens, Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 11, 366 (2017). https://doi.org/10.1038/nphoton.2017.75

    Article  CAS  Google Scholar 

  12. M. Engel, M. Steiner, A. Lombardo, A.C. Ferrari, H.V. Lohneysen, P. Avouris, R. Krupke, Light-matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. (2012). https://doi.org/10.1038/ncomms1911.

  13. P.N. First, W.A. de Heer, T. Seyller, C. Berger, J.A. Stroscio, J. Moon, Epitaxial graphenes on silicon carbide. MRS Bull. 35, 296 (2010). https://doi.org/10.1557/mrs2010.552

    Article  CAS  Google Scholar 

  14. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034.

  15. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024.

  16. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009). https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  17. R. Addou, A. Dahal, P. Sutter, M. Batzill, Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 100, 21601 (2012). https://doi.org/10.1063/1.3675481

    Article  CAS  Google Scholar 

  18. I.V. Vlassiouk, Y. Stehle, P.R. Pudasaini, R.R. Unocic, P.D. Rack, A.P. Baddorf, I.N. Ivanov, N.V. Lavrik, F. List, N. Gupta, K.V. Bets, B.I. Yakobson, S.N. Smirnov, Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17, 318 (2018). https://doi.org/10.1038/s41563-018-0019-3

    Article  CAS  Google Scholar 

  19. Y.P. Wu, H. Chou, H.X. Ji, Q.Z. Wu, S.S. Chen, W. Jiang, Y.F. Hao, J.Y. Kang, Y.J. Ren, R.D. Piner, R.S. Ruoff, Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6, 7731 (2012). https://doi.org/10.1021/nn301689m

    Article  CAS  Google Scholar 

  20. L.L. Patera, C. Africh, R.S. Weatherup, R. Blume, S. Bhardwaj, C. Castellarin-Cudia, A. Knop-Gericke, R. Schloegl, G. Comelli, S. Hofmann, C. Cepek, In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth. ACS Nano 7, 7901 (2013). https://doi.org/10.1021/nn402927q

    Article  CAS  Google Scholar 

  21. Z.J. Zhao, Z.F. Shan, C.K. Zhang, Q.Y. Li, B. Tian, Z.Y. Huang, W.Y. Lin, X.P. Chen, H.X. Ji, W.F. Zhang, W.W. Cai, Study on the diffusion mechanism of graphene grown on copper pockets. Small 11, 1418 (2015). https://doi.org/10.1002/smll.201402483

    Article  CAS  Google Scholar 

  22. L. Gao, G. Ni, Y. Liu, B. Liu, A.H. Castro Neto, K.P. Loh, Face-to-face transfer of wafer-scale graphene films. Nature 505, 190 (2014). https://doi.org/10.1038/nature12763.

  23. L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281 (2018). https://doi.org/10.1021/acs.chemrev.8b00325

    Article  CAS  Google Scholar 

  24. X.L. Ding, G.Q. Ding, X.M. Xie, F.Q. Huang, M.H. Jiang, Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49, 2522 (2011). https://doi.org/10.1016/j.carbon.2011.02.022

    Article  CAS  Google Scholar 

  25. H. Bi, S.R. Sun, F.Q. Huang, X.M. Xie, M.H. Jiang, Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J. Mater. Chem. 22, 411 (2012). https://doi.org/10.1039/c1jm14778a

    Article  CAS  Google Scholar 

  26. Z. Chen, C. Xie, W. Wang, J. Zhao, B. Liu, J. Shan, X. Wang, M. Hong, L. Lin, L. Huang, Direct growth of wafer-scale highly oriented graphene on sapphire. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abk0115.

  27. M.H. Rümmeli, A. Bachmatiuk, A. Scott, F. Börrnert, J.H. Warner, V. Hoffman, J.-H. Lin, G. Cuniberti, B. Büchner, Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206 (2010). https://doi.org/10.1021/nn100971s.

  28. J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu, Y. Liu, Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133, 17548 (2011). https://doi.org/10.1021/ja2063633

    Article  CAS  Google Scholar 

  29. H.J. Song, M. Son, C. Park, H. Lim, M.P. Levendorf, A.W. Tsen, J. Park, H.C. Choi, Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 4, 3050 (2012). https://doi.org/10.1039/C2NR30330B

    Article  CAS  Google Scholar 

  30. J. Chen, Y. Guo, Y. Wen, L. Huang, Y. Xue, D. Geng, B. Wu, B. Luo, G. Yu, Y. Liu, Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 25, 992 (2013). https://doi.org/10.1002/adma.201202973

    Article  CAS  Google Scholar 

  31. J. Pang, R.G. Mendes, P.S. Wrobel, M.D. Wlodarski, H.Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, M.H. Rümmeli, Self-Terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 11, 1946 (2017). https://doi.org/10.1021/acsnano.6b08069

    Article  CAS  Google Scholar 

  32. S. Byun, H. Lim, G. Shin, T. Han, S.H. Oh, J. Ahn, H.C. Choi, T. Lee, Graphenes converted from polymers. J. Phys. Chem. Lett. 2, 493 (2011). https://doi.org/10.1021/jz200001g

    Article  CAS  Google Scholar 

  33. J. Baek, M. Lee, J. Kim, J. Lee, S. Jeon, Transfer-free growth of polymer-derived graphene on dielectric substrate from mobile hot-wire-assisted dual heating system. Carbon 127, 41 (2018). https://doi.org/10.1016/j.carbon.2017.10.062.

  34. Z. Peng, Z. Yan, Z. Sun, J.M. Tour, Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5, 8241 (2011). https://doi.org/10.1021/nn202923y

    Article  CAS  Google Scholar 

  35. Y.B. Dong, Y.Y. Xie, C. Xu, Y.F. Fu, X. Fan, X.J. Li, L. Wang, F.Z. Xiong, W.L. Guo, G.Z. Pan, Q.H. Wang, F.S. Qian, J. Sun, Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aaccce.

  36. Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, J.M. Tour, Growth of bilayer graphene on insulating substrates. ACS Nano 5, 8187 (2011). https://doi.org/10.1021/nn202829y

    Article  CAS  Google Scholar 

  37. G. Kalita, T. Sugiura, Y. Wakamatsu, R. Hirano, M. Tanemura, Controlling the direct growth of graphene on an insulating substrate by the solid phase reaction of a polymer layer. Rsc Adv 4, 38450 (2014). https://doi.org/10.1039/C4RA05393A

    Article  CAS  Google Scholar 

  38. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549 (2010). https://doi.org/10.1038/nature09579

    Article  CAS  Google Scholar 

  39. T. Takami, R. Seino, K. Yamazaki, T. Ogino, Graphene film formation on insulating substrates using polymer films as carbon source. J. Phys. D Appl. Phys. 47, 94015 (2014). https://doi.org/10.1088/0022-3727/47/9/094015

    Article  CAS  Google Scholar 

  40. Y. Yao, C. Wong, Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition. Carbon 50, 5203 (2012). https://doi.org/10.1016/j.carbon.2012.07.003.

  41. E. Lee, S.G. Lee, H.C. Lee, M. Jo, M.S. Yoo, K. Cho, Direct growth of highly stable patterned graphene on dielectric insulators using a surface-adhered solid carbon source. Adv. Mater. 30, 1706569 (2018). https://doi.org/10.1002/adma.201706569

    Article  CAS  Google Scholar 

  42. J. Li, X.Y. Wang, X.R. Liu, Z. Jin, D. Wang, L.J. Wan, Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure. J. Mater. Chem. C 3, 3530 (2015). https://doi.org/10.1039/c5tc00235d

    Article  CAS  Google Scholar 

  43. X. Liu, J. Zhang, W. Wang, W. Zhao, H. Chen, B. Liu, M. Zhang, F. Liang, L. Zhang, R. Zhang, N. Li, Y. Zhang, Y. Liu, K. Jia, L. Sun, Y. Zhao, P. Gao, Q. Yuan, L. Lin, H. Peng, Z. Liu, The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3922-x

    Article  Google Scholar 

  44. K.M. Reddy, A.D. Gledhill, C.H. Chen, J.M. Drexler, N.P. Padture, High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3569143.

  45. S.S. Chen, H.X. Ji, H. Chou, Q.Y. Li, H.Y. Li, J.W. Suk, R. Piner, L. Liao, W.W. Cai, R.S. Ruoff, Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 25, 2062 (2013). https://doi.org/10.1002/adma.201204000

    Article  CAS  Google Scholar 

  46. X.Z. Xu, Z.H. Zhang, J.C. Dong, D. Yi, J.J. Niu, M.H. Wu, L. Lin, R.K. Yin, M.Q. Li, J.Y. Zhou, S.X. Wang, J.L. Sun, X.J. Duan, P. Gao, Y. Jiang, X.S. Wu, H.L. Peng, R.S. Ruoff, Z.F. Liu, D.P. Yu, E.G. Wang, F. Ding, K.H. Liu, Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074 (2017). https://doi.org/10.1016/j.scib.2017.07.005

    Article  CAS  Google Scholar 

  47. J. Robertson, A.C. Ferrari, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  48. J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, A.C. Ferrari, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  49. K. Celebi, M.T. Cole, J.W. Choi, F. Wyczisk, P. Legagneux, N. Rupesinghe, J. Robertson, K.B.K. Teo, H.G. Park, Evolutionary kinetics of graphene formation on copper. Nano Lett. 13, 967 (2013). https://doi.org/10.1021/nl303934v

    Article  CAS  Google Scholar 

  50. H. Kim, C. Mattevi, M.R. Calvo, J.C. Oberg, L. Artiglia, S. Agnoli, C.F. Hirjibehedin, M. Chhowalla, E. Saiz, Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614 (2012). https://doi.org/10.1021/nn3008965

    Article  CAS  Google Scholar 

  51. L. Liu, H. Zhou, R. Cheng, Y. Chen, Y.-C. Lin, Y. Qu, J. Bai, I.A. Ivanov, G. Liu, Y. Huang, X. Duan, A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. J. Mater. Chem. 22, 1498 (2012). https://doi.org/10.1039/C1JM14272K

    Article  CAS  Google Scholar 

  52. X. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E.M. Vogel, E. Voelkl, L. Colombo, R.S. Ruoff, Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328 (2010). https://doi.org/10.1021/nl101629g

    Article  CAS  Google Scholar 

  53. M. Saeed, J.D. Robson, I.A. Kinloch, B. Derby, C.-D. Liao, S. Al-Awadhi, E. Al-Nasrallah, The formation mechanism of hexagonal Mo2C defects in CVD graphene grown on liquid copper. Phys. Chem. Chem. Phys. 22, 2176 (2020). https://doi.org/10.1039/C9CP05618A

    Article  CAS  Google Scholar 

  54. D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, Y. Liu, Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. 109, 7992 (2012). https://doi.org/10.1073/pnas.1200339109

    Article  Google Scholar 

  55. A. Ibrahim, S. Akhtar, M. Atieh, R. Karnik, T. Laoui, Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition. Carbon 94, 369 (2015). https://doi.org/10.1016/j.carbon.2015.06.067

    Article  CAS  Google Scholar 

  56. Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res 1, 273 (2008). https://doi.org/10.1007/s12274-008-8036-1

    Article  CAS  Google Scholar 

  57. C. Su, A. Lu, C. Wu, Y. Li, K. Liu, W. Zhang, S. Lin, Z. Juang, Y. Zhong, F. Chen, L. Li, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 11, 3612 (2011). https://doi.org/10.1021/nl201362n

    Article  CAS  Google Scholar 

  58. H.X. Ji, Y.F. Hao, Y.J. Ren, M. Charlton, W.H. Lee, Q.Z. Wu, H.F. Li, Y.W. Zhu, Y.P. Wu, R. Piner, R.S. Ruoff, Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5, 7656 (2011). https://doi.org/10.1021/nn202802x

    Article  CAS  Google Scholar 

  59. Y. Chen, Y. Zhao, D. Zhou, Y. Li, Q. Wang, Z. Zhao, Growth mechanism of transfer-free graphene synthesized from different carbon sources and verified by ion implantation. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0058773.

  60. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on ni and cu by carbon isotope labeling. Nano Lett. 9, 4268 (2009). https://doi.org/10.1021/nl902515k

    Article  CAS  Google Scholar 

  61. T. Liang, Y. Kong, H. Chen, M. Xu, From solid carbon sources to graphene. Chinese J. Chem. 34, 32 (2016). https://doi.org/10.1002/cjoc.201500429.

  62. H. Seo, K. Kim, S. Min, Y. Lee, C.E. Park, R. Raj, T. Lee, Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer. 2D Mater 4, 24001 (2017). https://doi.org/10.1088/2053-1583/aa5408.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11774255) and the National Key R&D Program of China (No. 2020YFC2004602).

Funding

Funding was provided by the National Natural Science Foundation of China (Grant Number 11774255) and the National Key R&D Program of China (973 Program) (Grant Number 2020YFC2004602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqing Ma or Lei Ma.

Ethics declarations

Conflict of interest

The authors have no relevant conflict of interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1683 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, M., Chen, Z. et al. Study of solid carbon source-based graphene growth directly on SiO2 substrate with Cu or Cu/Ni as the sacrificial catalysts. MRS Communications 13, 34–40 (2023). https://doi.org/10.1557/s43579-022-00308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00308-z

Keywords

Navigation