Skip to main content
Log in

Self-exothermic esterification-crosslinking of bio-polymer/graphene composite for application in interbody fusion cage

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The commercial interbody fusion cage is generally based on rigid materials (e.g. Ti metal, PEEK plastic and so on), resulting in discomfort and limiting the movement of vertebration for human. A new soft and elastic polymer composite is prepared by self-exothermic esterification-crosslinking method for application in interbody fusion cage. It is mainly composed of bio-polymer (e.g. PVA and Chitosan), hydroxyapatite and graphene nanosheets. The interbody fusion cage is fabricated by 3D printing and mould process from bio-polymer composite. The interbody fusion cage does not only show high elastic modulus (ca. 246.5 MPa), but also exhibits good compression elastic deformation (more than 15%), enhancing comfort of human. Furthermore, the interbody fusion cage can produce Ca ions and shows grade 1 (few reactivity) of cytotoxicity, indicating good osteoconductivity and biocompatibility. The work demonstrates the practical application of present bio-polymer/graphene composite in interbody fusion cage with comfort.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. G. Matge, Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir. 144, 539 (2002)

    Article  CAS  Google Scholar 

  2. G. Bartosz, D. Maciej, Advantages and disadvantages of the use of various types of interbody implants in cervical spine surgery. Crit. Rev. Lit. 12, 213 (2020)

    Google Scholar 

  3. S.A. Zadegan, A. Abedi, H.N. Bonaki, A.R. Vaccaro, V.R. Movaghar, S.B. Jazayeri, Clinical application of ceramics in anterior cervical discectomy and fusion: a review and update. Global Spine J. 7, 343 (2017)

    Article  Google Scholar 

  4. X. Yang, Q. Chen, L.M. Liu, Y.M. Song, Q.Q. Kong, J.C. Zeng, Y.D. Xue, C.P. Ren, Comparison of anterior cervical fusion by titanium mesh cage versus nano-hydroxyapatite/polyamide cage following single-level corpectomy. Int. Orthop. 37, 2421 (2013)

    Article  Google Scholar 

  5. C. Brenke, S. Kindling, J. Scharf, K. Schmieder, M. Barth, Short-term experience with a new absorbable composite cage (beta-tricalcium phosphate-polylactic acid) in patients after stand-alone anterior cervical discectomy and fusion. Spine 38, 635 (2013)

    Article  Google Scholar 

  6. Y. Shikinami, M. Okuno, Mechanical evaluation of novel spinal interbody fusion cages made of bioactive, resorbable composites. Biomaterials 24, 3161 (2003)

    Article  CAS  Google Scholar 

  7. W.C. Chang, H.K. Tsou, W.S. Chen, C.C. Chen, C.C. Shen, Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion. J. Clin. Neurosci. 16, 793 (2009)

    Article  Google Scholar 

  8. P. Tienboon, S. Atiprayoon, Comparing anterior cervical fusion using titanium cage with hydroxyapatite and with autograft. Asian Biomedi. 4, 147 (2010)

    Article  Google Scholar 

  9. Y. Teng, G. Hugo, R. Asghar, X. Liu, M.A. Lee, B.E. Waletzki, L. Lu, Poly(propylene fumarate)-hydroxyapatite nanocomposite can be a suitable candidate for cervical cages. J. Biomech. Eng. 140, 221 (2018)

    Article  Google Scholar 

  10. Y. Zhang, X. Deng, D.M. Jiang, X.J. Luo, K. Tang, Z.H. Zhao, W.Y. Zhong, T. Lei, Z.X. Quan, Long-term results of anterior cervical corpectomy and fusion with nano-hydroxyapatite/polyamide 66 strut for cervical spondylotic myelopathy. Sci. Rep. 6, 26751 (2016)

    Article  CAS  Google Scholar 

  11. Z. Du, C. Wang, R. Zhang, X. Wang, X. Li, Applications of graphene and its derivatives in bone repair: advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int. J. Nanomed. 15, 7523 (2020)

    Article  CAS  Google Scholar 

  12. H.Y. Zheng, R.H. Guan, Q.X. Liu, K.T. Ou, D.S. Li, J. Fang, Q. Fu, Y.Y. Sun, A flexible supercapacitor with high capacitance retention at an ultra-low temperature of -65.0℃. Electrochim. Acta. 424, 140–644 (2022)

    Article  Google Scholar 

  13. V.S. Ghorpade, R.J. Dias, K.K. Mali, S.I. Mulla, Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. J. Drug Deliv. Sci. Technol. 52, 421 (2019)

    Article  CAS  Google Scholar 

  14. M.N.A. Wahid, S.I.A. Razak, M.R.A. Kadir, K.A.M. Amin, A.R.S. Izwan, W.M.N. Abdul, Influence of citric acid on the physical and biomineralization ability of freeze/thaw poly(vinyl alcohol) hydrogel. J. Biomater. Appl. 33, 94 (2018)

    Article  CAS  Google Scholar 

  15. J.J. Du, S.C. Gan, Q.H. Bian, D.H. Fu, Y. Wei, K.Q. Wang, Q.X. Lin, W.Y. Chen, D. Huang, Preparation and characterization of porous hydroxyapatite/beta-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering. J. Biomater. Appl. 33, 402 (2018)

    Article  CAS  Google Scholar 

  16. T.P. Kunzler, T. Drobek, M. Schuler, N.D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 28, 2175 (2007)

    Article  CAS  Google Scholar 

  17. L. Cao, Q. Chen, L.B. Jiang, X.F. Yin, C. Bian, H.R. Wang, Y.Q. Ma, X.Q. Li, X.L. Li, J. Dong, Bioabsorbable self-retaining PLA/nano-sized beta-TCP cervical spine interbody fusion cage in goat models: an in vivo study. Int. J. Nanomed. 12, 7197 (2017)

    Article  CAS  Google Scholar 

  18. Y.H. Wang, X.F. Cao, M. Ma, W.P. Lu, B. Zhang, Y.C. Guo, A Gel MA-PEGDA-nHA composite hydrogel for bone tissue engineering. Materials (Basel) 13, 2 (2022)

    Google Scholar 

  19. K. Chen, J.L. Liu, X.H. Yang, D.K. Zhang, Preparation, optimization and property of PVA-HA/PAA composite hydrogel. Mater. Sci. Eng. C. 78, 520 (2017)

    Article  CAS  Google Scholar 

  20. Z.Q. Zhang, Z.Q. Ma, Y.H. Zhang, F.X. Chen, Y. Zhou, Q. An, Dehydrothermally crosslinked collagen/hydroxyapatite composite for enhanced in vivo bone repair. Colloids Surf. B Biointerfaces. 163, 394 (2018)

    Article  CAS  Google Scholar 

  21. X.X. Fan, H.T. Peng, H. Li, Y.G. Yan, Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. J. Biomater. Sci. Polym. Ed. 30, 107 (2019)

    Article  CAS  Google Scholar 

  22. Z.K. Kuo, M.Y. Fang, T.Y. Wu, T. Yang, H.W. Tseng, C.C. Chen, C.M. Cheng, Hydrophilic films: how hydrophilicity affects blood compatibility and cellular compatibility. Adv. Polym. Technol. 37, 1635 (2018)

    Article  CAS  Google Scholar 

  23. J.G. McMorran, D.E. Gregory, The effect of compressive loading rate on annulus fibrosus strength following endplate fracture. Med. Eng. Phys. 93, 17 (2021)

    Article  Google Scholar 

  24. H. Zhang, Z.H. Wang, Y. Wang, Z.H. Li, B. Chao, S.X. Liu, W.W. Luo, J.H. Jiao, M.F. Wu, Biomaterials for interbody fusion in bone tissue engineering. Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2022.900992

    Article  Google Scholar 

  25. K. Liu, L. Zhu, S. Tang, W. Wen, L. Lu, M. Liu, C. Zhou, B. Luo, Fabrication and evaluation of a chitin whisker/poly(L-lactide) composite scaffold by the direct trisolvent-ink writing method for bone tissue engineering. Nanoscale 12, 18225 (2020)

    Article  CAS  Google Scholar 

  26. S. Nakamura, T. Matsumoto, J.I. Sasaki, H. Egusa, K.Y. Lee, T. Nakano, T. Sohmura, A. Nakahira, Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng. Part A. 16, 2467 (2010)

    Article  CAS  Google Scholar 

  27. Y. Yang, Y. Xiao, Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv. Healthc. Mater. 9, 2000726 (2020)

    Article  CAS  Google Scholar 

  28. K. Seyran, T. Tutku, P. Ozhan, S. Zeynep, Research into biocompatibility and cytotoxicity of daptomycin, gentamicin, vancomycin and teicoplanin antibiotics at common doses added to bone cement. Joint Dis. Relat. Surg. 31, 328 (2020)

    Google Scholar 

  29. C. Hendrich, M. Geyer, D. Scheddin, N. Schutze, J. Eulert, R. Thull, A new osteoblast cell culture system for the testing of biomaterials in accordance with relevant standards. Biomed. Eng. 41, 278 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the National Natural Science Foundation of China under Grants (51773184), Natural Science Foundation of Shanxi Province (Grant Nos. 201803D421081 and 20181102014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Liu or Youyi Sun.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, K., Liu, Q., Liu, X. et al. Self-exothermic esterification-crosslinking of bio-polymer/graphene composite for application in interbody fusion cage. MRS Communications 13, 8–15 (2023). https://doi.org/10.1557/s43579-022-00296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00296-0

Keywords

Navigation