Skip to main content
Log in

Porous silicon composite silver dendrite irregular nanoparticles with high SERS performance

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Three-dimensional plasmonic nanodetection substrates can be used for surface-enhanced Raman scattering (SERS) with high sensitivity, good spectral uniformity, and reproducibility. An electrolyte was prepared and electric field applied to synthesize silver nanodendrites on a p-type porous silicon substrate. After electrochemical polishing and ultrasonic crushing, final porous silicon–silver dendrite composite particles were obtained. Using rhodamine 6G as the probe molecule, the detection limit was 10−12 M. Compared with the original solid-state substrate, the detection sensitivity was higher. This study provided a promising SERS platform for chemical and biomolecular detection.

Graphical abstract

Electrochemical synthesis of SERS detection substrates in AgNO3 and DMF modified HF-containing electrolytes, and ultrasonic fragmentation to obtain porous silicon/silver dendrite composite particles. Schematic diagram showing the preparation method of porous Si/Ag nanodendritic composites and the principle of SERS enhancement. SEM image and Raman detection image of the composite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. C. Han, Y. Yao, W. Wang, L. Qu, L. Bradley, S. Sun, Y. Zhao, Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sens. Actuators B 251, 272–279 (2017)

    Article  CAS  Google Scholar 

  2. E. Zhang, Z. Xing, D. Wan, H. Gao, Y. Han, Y. Gao, H. Hu, Z. Cheng, T. Liu, Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene. J. Semicond. 42, 1674–4926 (2021)

    Article  Google Scholar 

  3. R.L. Garrell, Surface-enhanced Raman spectroscopy. Anal. Chem. (2008). https://doi.org/10.1021/ac00181a001

    Article  Google Scholar 

  4. J. Leem, M.C. Wang, P. Kang, S. Nam, Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684–7690 (2015)

    Article  CAS  Google Scholar 

  5. S. Kasani, K. Curtin, N. Wu, A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanotechnology-Berlin 8, 2065–2089 (2019)

    CAS  Google Scholar 

  6. L. Yang, K. Minjoon, S.H. Cho, J.Y. Sik, Vertically aligned nanostructures for a reliable and ultrasensitive SERS-active platform: fabrication and engineering strategies. Nano Today 37, 101063 (2021)

    Article  Google Scholar 

  7. Y. Sun, K. Liu, J. Miao, Z. Wang, B. Tian, L. Zhang, Q. Li, S. Fan, K. Jiang, Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett. 10, 1747–1753 (2010)

    Article  CAS  Google Scholar 

  8. G. Lu, H. Li, H. Zhang, Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chem. Commun. 47(30), 8560 (2011)

    Article  CAS  Google Scholar 

  9. W. Xu, X. Ling, J. Xiao, M.S. Dresselhaus, J. Kong, H. Xu, Z. Liu, J. Zhang, Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 109, 9281 (2012)

    Article  CAS  Google Scholar 

  10. L. Zhang, X. Gong, Y. Bao, Y. Zhao, M. Xu, C. Jiang, H. Fong, Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Langmuir 28, 14433–14440 (2012)

    Article  CAS  Google Scholar 

  11. G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    Article  CAS  Google Scholar 

  12. Y. Watanabe, Y. Arita, T. Yokoyama, Y. Igarashi, Formation and properties of porous silicon and its application. J. Electrochem. Soc. 122, 1351 (2019)

    Article  Google Scholar 

  13. A.-G. Sofia, M.-I. Naama, S. Ester, W. Sharon, Porous silicon-based photonic biosensors: current status and emerging applications. Anal. Chem. 91, 441–467 (2019)

    Article  Google Scholar 

  14. W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P.K. Chu, K. Huo, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447 (2019)

    Article  Google Scholar 

  15. Z. Liu, Y. Li, W. Li, C. Xiao, D. Liu, C. Dong, M. Zhang, E. Mäkilä, M. Kemell, J. Salonen, J.T. Hirvonen, H. Zhang, D. Zhou, X. Deng, H.A. Santos, Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv. Mater. 30, 1703393 (2018)

    Article  Google Scholar 

  16. D. Priyanka, D. Samaresh, D. Saakshi, Wafer-scale synthesized MoS2/porous silicon nanostructures for efficient and selective ethanol sensing at room temperature. ACS Appl. Mater. Interfaces 9, 21017–21024 (2017)

    Article  Google Scholar 

  17. R. Matthew, C.M. Cobley, Z. Jie, L. Weiyang, C.H. Moran, Z. Qiang, Q. Dong, X. Younan, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  Google Scholar 

  18. S.X. Shuang, W.G. Zhong, H. Xun, Z. Wei, Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Phys. Chem. Chem. Phys. 11, 7450–7454 (2009)

    Article  Google Scholar 

  19. G. Ashwin, S.V. Boriskina, P.W. Ranjith, Z. Lawrence, B.M. Reinhard, D.N. Luca, Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett. 9, 3922–3929 (2009)

    Article  Google Scholar 

  20. S. Habouti, M. Matefi-Tempfli, C.H. Solterbeck, M. Es-Souni, S. Matefi-Tempfli, M. Es-Souni, On-substrates, self-standing Au-nanorod arrays showing morphology controlled properties. Nano Today 6, 12–19 (2011)

    Article  CAS  Google Scholar 

  21. P.P. Zhang, J. Gao, X.H. Sun, An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays. Appl. Phys. Lett. 106, 043103 (2015)

    Article  Google Scholar 

  22. K. Zhang, J. Ji, X. Fang, L. Yan, B. Liu, Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing. Analyst 140, 134–139 (2015)

    Article  CAS  Google Scholar 

  23. A.J. Cakes, R.P. Vaz, C. Fantini, L.O. Ladeira, Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids. J. Colloid Interface Sci. 455, 78–82 (2015)

    Article  Google Scholar 

  24. R. Fu, G. Liu, C. Jia, X. Li, X. Tang, G. Duan, Y. Li, W. Cai, Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses. Chem. Commun. 51, 6609–6612 (2015)

    Article  CAS  Google Scholar 

  25. K. Sivashanmugan, H. Lee, C. Syu, B. Liu, J. Liao, Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue. J. Taiwan Inst. Chem. E 75, 287–291 (2017)

    Article  CAS  Google Scholar 

  26. L. Wang, H. Li, J. Tian, X. Sun, Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl. Mater. Interfaces 2, 2987–2991 (2010)

    Article  CAS  Google Scholar 

  27. Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, X. Sun, One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Adv. 2, 538–545 (2012)

    Article  CAS  Google Scholar 

  28. W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. J. Colloid Interface Sci. 299, 513–519 (2006)

    Article  CAS  Google Scholar 

  29. D. Ge, L. Lu, J. Zhang, L. Zhang, J. Ding, P. Reece, Electrochemical fabrication of silicon-based micro-nano-hybrid porous arrays for hybrid-lattice photonic crystal. ECS J. Solid State Sci. Technol. 6, 893–897 (2017)

    Article  Google Scholar 

  30. D.H. Ge, J.X. Wei, J. Ding, J. Zhang, C. Ma, M.C. Wang, L.Q. Zhang, S.N. Zhu, Silver nano-dendrite-plated porous silicon substrates formed by single-step electrochemical synthesis for surface-enhanced Raman scattering. ACS Appl. Nano Mater. 3, 3011–3018 (2020)

    Article  CAS  Google Scholar 

  31. Y. Nakabayashi, H. Sakai, R. Suzuki, S. Yamada, Formation of silver particles for SERS spectroscopy by mist chemical vapor deposition method. Jpn. J. Appl. Phys. 58, 120908 (2019)

    Article  CAS  Google Scholar 

  32. W. Wei, X. Gong, J. Sun, D. Pan, Q. Huang, C. Wang, Cellophane paper-based surface-enhanced Raman scattering (SERS) substrates for detecting Rhodamine 6G in water and chili powder. Vib. Spectrosc. 102, 52–56 (2019)

    Article  CAS  Google Scholar 

  33. Y. Çelik, A. Kurt, Three dimensional porous Expanded Graphite/Silver Nanoparticles nanocomposite platform as a SERS substrate. Appl. Surf. Sci. 568, 150946 (2021)

    Article  Google Scholar 

  34. H. Mei, H. Bai, S. Bai, X. Li, X. Zhao, L. Cheng, Tuning Ag content in Au Ag nanosponges for superior SERS detection. Mater. Lett. 230, 24–27 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial supports from Natural Science Foundation of China (92163216), Natural Science Foundation of Jiangsu Province (BK20180098), Youth Program of the Faculty of Agricultural Equipment of Jiangsu University (NZXB20210204), and Open Research Fund of National Laboratory of Solid-State Microstructures (M33042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daohan Ge or Liqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal rights

All the experimental contents in this paper do not involve the problems of infringing human and animal rights.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Zhao, C., Shi, J. et al. Porous silicon composite silver dendrite irregular nanoparticles with high SERS performance. MRS Communications 12, 856–863 (2022). https://doi.org/10.1557/s43579-022-00256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00256-8

Keywords

Navigation