Skip to main content
Log in

Microwave-hydrothermal synthesis of BiPO4/MoS2 nanocomposite: Photocatalytic activity, kinetics model, and mechanism

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The main goal of this study is to find a fast and cost-effective way to synthesize BiPO4/MoS2 nanocomposite using a microwave-hydrothermal method. In contrast to BiPO4/MoS2, the obtained results from the characterization reveal that BiPO4 has a higher electron–hole recombination rate. Rhodamine B dye degradation was used to evaluate the nanocomposite's photocatalytic activity. This study introduces a novel method for producing BiPO4-based photocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park, A.C.K. Yip, Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 12, 955–972 (2019). https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  2. J. Di, J. Chen, M. Ji, Q. Zhang, L. Xu, J. Xia, H. Li, Reactable ionic liquid induced homogeneous carbon superdoping of BiPO4 for superior photocatalytic removal of 4-chlorophenol. Chem. Eng. J 313, 1477–1485 (2017). https://doi.org/10.1016/j.cej.2016.11.045

    Article  CAS  Google Scholar 

  3. H. Lv, Y. Liu, H. Tang, P. Zhang, J. Wang, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles. Appl. Surf. Sci. 425, 100–106 (2017). https://doi.org/10.1016/j.apsusc.2017.06.303

    Article  CAS  Google Scholar 

  4. W.K. Darkwah, B.B. Adormaa, M.K. Christelle Sandrine, Y. Ao, Modification strategies for enhancing the visible light responsive photocatalytic activity of the BiPO4 nano-based composite photocatalysts. Catal. Sci. Technol. 9, 546–566 (2019). https://doi.org/10.1039/c8cy02039f

    Article  CAS  Google Scholar 

  5. J. Chen, J. Liu, H. Deng, S. Yao, Y. Wang, Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method. Ceram. Int. 46, 2185–2193 (2020). https://doi.org/10.1016/j.ceramint.2019.09.203

    Article  CAS  Google Scholar 

  6. S.M. Roopan, M.A. Khan, MoS2 based ternary composites: Review on heterogeneous materials as catalyst for photocatalytic degradation. Catal. Rev. Sci. Eng. (2021). https://doi.org/10.1080/01614940.2021.1962493

    Article  Google Scholar 

  7. H. Irfan, K. Mohamed Racik, S. Anand, Microstructural evaluation of CoAl2O4 nanoparticles by Williamson-Hall and size–strain plot methods. J. Asian Ceram. Soc. 6, 54–62 (2018). https://doi.org/10.1080/21870764.2018.1439606

    Article  Google Scholar 

  8. S. Narasimman, L. Balakrishnan, S.R. Meher, R. Sivacoumar, Z.C. Alex, Influence of surface functionalization on the gas sensing characteristics of ZnO nanorhombuses. J. Alloys Compd. 706, 186–197 (2017). https://doi.org/10.1016/j.jallcom.2017.02.160

    Article  CAS  Google Scholar 

  9. N. Ramjeyanthi, M. Alagar, D. Muthuraman, Synthesis, structural and optical behavior of cerium oxide nanoparticles by co-precipitation method. Int. J. Sci. Res. Sci. Technol. 4, 1009–1013 (2018)

    Google Scholar 

  10. L. Derikvand, N. Tahmasebi, Synthesis and photocatalytic performance of Bi2WO6/BiOX (X= Cl, Br, I) composites for RhB degradation under visible light. Korean J. Chem. Eng. 38, 163–169 (2021). https://doi.org/10.1007/s11814-020-0687-y

    Article  CAS  Google Scholar 

  11. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl. Catal. B: Environ. 220, 290–302 (2018). https://doi.org/10.1016/j.apcatb.2017.08.049

    Article  CAS  Google Scholar 

  12. D. Zhang, T. Xu, M. Cao, A. Liu, Q. Zhao, L. Zhang, H. Zhang, T. Xue, X. Cui, W. Zheng, Facile band alignment of C3N4/CdS/MoS2 sandwich hybrid for efficient charge separation and high photochemical performance under visible-light. Powder Technol. 351, 222–228 (2019). https://doi.org/10.1016/j.powtec.2019.03.043

    Article  CAS  Google Scholar 

  13. G. Chen, S. Bian, C.-Y. Guo, X. Wu, Insight into the Z-scheme heterostructure WO3/g-C3N4 for enhanced photocatalytic degradation of methyl orange. Mater. Lett. 236, 596–599 (2019). https://doi.org/10.1016/j.matlet.2018.11.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Elamathi, Selvaraj Mohana Roopan or Gunabalan Madhumitha.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 121 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chellapandi, T., Elamathi, M., Roopan, S.M. et al. Microwave-hydrothermal synthesis of BiPO4/MoS2 nanocomposite: Photocatalytic activity, kinetics model, and mechanism. MRS Communications 12, 838–843 (2022). https://doi.org/10.1557/s43579-022-00252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00252-y

Keywords

Navigation