Skip to main content
Log in

A useful approach to understand the origin of defects in transparent YAG ceramics

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Transparent yttrium aluminum garnet (YAG) ceramics are mostly sintered under vacuum to favor pore closure. However, this may conceal the origin of microstructural defects, complicating process optimization. We describe a useful approach to understand the origin of defects in transparent YAG ceramics: reactive sintering was performed in air at a moderate temperature for a short time. The resulting microstructure allowed to understand the origin of defects in corresponding vacuum-sintered specimens. The porosity of air sintered samples could be related to the presence of aggregates of starting oxide particles, which eventually under vacuum react to form YAG, but leave behind pores.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Data availability

The authors declare that datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.-H. Lee, S. Kochawattana, G.L. Messing, J.Q. Dumm, G. Quarles, V. Castillo, Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 89, 1945–1950 (2006). https://doi.org/10.1111/j.1551-2916.2006.01051.x

    Article  CAS  Google Scholar 

  2. X. Chen, T. Lu, N. Wei, T. Hua, Q. Zeng, Y. Wu, Fabrication and microstructure development of Yb:YAG transparent ceramics from co-precipitated powders without additives. J. Am. Ceram. Soc. 102, 7154–7167 (2019). https://doi.org/10.1111/jace.16635

    Article  CAS  Google Scholar 

  3. R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, C. Sallé, Microstructural evolution during vacuum sintering of yttrium aluminium garnet transparent ceramics: toward the origin of residual porosity affecting the transparency. J. Am. Ceram. Soc. 96, 1724–1731 (2013). https://doi.org/10.1111/jace.12315

    Article  CAS  Google Scholar 

  4. E.R. Kupp, S. Kochawattana, S.-H. Lee, S. Misture, G.L. Messing, Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction. J. Mater. Res. 29, 2303–2311 (2014). https://doi.org/10.1557/jmr.2014.224

    Article  CAS  Google Scholar 

  5. A. Ikesue, Y.L. Aung, T. Taira, T. Kamimura, K. Yoshida, G.L. Messing, Progress in ceramic lasers. Annu. Rev. Mater. Res. 36, 397–429 (2006). https://doi.org/10.1146/annurev.matsci.36.011205.152926

    Article  CAS  Google Scholar 

  6. R. Boulesteix, A. Maître, J.-F. Baumard, Y. Rabinovitch, Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy. Mater. Lett. 64, 1854–1857 (2010). https://doi.org/10.1016/j.matlet.2010.05.028

    Article  CAS  Google Scholar 

  7. A.J. Stevenson, X. Lin, M.A. Martinez, J.M. Andreson, D.L. Suchy, E.R. Kupp, E.C. Dickey, K.T. Muller, G.L. Messing, Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. J. Am. Ceram. Soc. 94, 1380–1387 (2011). https://doi.org/10.1111/j.1551-2916.2010.04260.x

    Article  CAS  Google Scholar 

  8. L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications. J. Eur. Ceram. Soc. 32, 2273–2281 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.047

    Article  CAS  Google Scholar 

  9. T. Uhlířová, J. Hostaša, W. Pabst, Characterization of the microstructure of YAG ceramics via stereology-based image analysis. Ceram. Silik. 58, 173–183 (2014)

    Google Scholar 

  10. A. Ikesue, K. Yoshida, T. Yamamoto, I. Yamaga, Optical scattering centers in polycrystalline Nd:YAG laser. J. Am. Ceram. Soc. 80, 1517–1522 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03011.x

    Article  CAS  Google Scholar 

  11. A. Krell, J. Klimke, T. Hutzler, Transparent compact ceramics: Inherent physical issues. Opt. Mat 31, 1144–1150 (2009). https://doi.org/10.1016/j.optmat.2008.12.009

    Article  CAS  Google Scholar 

  12. W. Pabst, J. Hostaša, L. Esposito, Porosity and pore size dependence of the real in-line transmission of YAG and alumina ceramics. J. Eur. Ceram. Soc. 34, 2745–2756 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.053

    Article  CAS  Google Scholar 

  13. J. Hostaša, L. Esposito, D. Alderighi, A. Pirri, Preparation and characterization of Yb-doped YAG ceramics. Opt. Mater. 35, 798–803 (2013). https://doi.org/10.1016/j.optmat.2012.05.028

    Article  CAS  Google Scholar 

  14. J. Li, J. Liu, B. Liu, W. Liu, Y. Zeng, X. Ba, T. Xie, B. Jiang, Q. Liu, Y. Pan, X. Feng, J. Guo, Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics. J. Eur. Ceram. Soc. 34, 2497–2507 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.03.004D

    Article  CAS  Google Scholar 

  15. J. Hostaša, F. Picelli, S. Hříbalová, V. Nečina, Sintering aids, their role and behaviour in the production of transparent ceramics. Open Ceram. 7, 100137 (2021). https://doi.org/10.1016/j.oceram.2021.100137

    Article  CAS  Google Scholar 

  16. J. Liu, L. Lin, J. Li, J. Liu, Y. Yuan, M. Ivanov, M. Chen, B. Liu, L. Ge, T. Xie, H. Kou, Y. Shi, Y. Pan, J. Guo, Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics. Ceram. Int. 40, 9841–9851 (2014). https://doi.org/10.1016/j.ceramint.2014.02.076

    Article  CAS  Google Scholar 

  17. A. Goldstein, A. Krell, Transparent ceramics at 50: progress made and further prospects. J. Am. Ceram. Soc. 99, 3173–3197 (2016). https://doi.org/10.1111/jace.14553

    Article  CAS  Google Scholar 

  18. L. Esposito, A. Piancastelli, A.L. Costa, M. Serantoni, G. Toci, M. Vannini, Experimental features affecting the transparency of YAG ceramics. Opt. Mat. 33, 713–721 (2011). https://doi.org/10.1016/j.optmat.2010.09.016

    Article  Google Scholar 

  19. S. Hříbalová, W. Pabst, Modeling light scattering by spherical pores for calculating the transmittance of transparent ceramics—all you need to know. J. Eur. Ceram. Soc. 41, 2169–2192 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.046

    Article  CAS  Google Scholar 

  20. R.P. Yavetskiy, V.N. Baumer, A.G. Doroshenko, Yu.L. Kopylov, DYu. Kosyanov, V.B. Kravchenko, S.V. Parkhomenko, A.V. Tolmachev, Phase formation and densification peculiarities of Y3Al5O12:Nd3+ during reactive sintering. J. Cryst. Growth 401, 839–843 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Italian Ministry of Defence under PNRM Contract No. 8731 of 04/12/2019 (CeMiLAP2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Esposito.

Ethics declarations

Conflict of interest

The authors declare that they have no affiliation or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picelli, F., Biasini, V., Hostaša, J. et al. A useful approach to understand the origin of defects in transparent YAG ceramics. MRS Communications 12, 807–812 (2022). https://doi.org/10.1557/s43579-022-00240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00240-2

Keywords

Navigation