Skip to main content
Log in

Synthesis of boron nitride nanosheets incorporated with Pd nanoparticles for reduction of nitroaromatics

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

As an analogous to graphene, hexagonal boron nitride nanosheets (BNNSs) posses interesting and unique properties. Here, we successfully exfoliated commercial h-BN powder to BNNSs with large lateral sizes of 200 nm and thicknesses of 2–5 nm by N-methyl-2-pyrrolidone aqueous solution. The various loading amount of palladium nanoparticles with sizes of about 7 nm were uniformly distributed on BNNSs. The XPS, FTIR and TEM results indicated a strong interaction between Pd nanoparticles and BNNSs. The prepared Pd incorporated BNNSs showed superior catalytic activity and cycle stability for the hydrogenation reduction of p-nitrophenol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. M.Y. Yang, J.P. Li, P. Gu, X.Q. Fan, The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact. Mater. 6, 1973–1987 (2021)

    Article  CAS  Google Scholar 

  2. R.R. Arvizo, S. Rana, O.R. Miranda, R. Bhattacharya, V.M. Rotello, P. Mukherjee, Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed.: Nanotechnol. Biol. Med. 7, 580–587 (2011)

    Article  CAS  Google Scholar 

  3. R. Narayanan, Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-coupling reactions. Molecules 15, 2124–2138 (2010)

    Article  CAS  Google Scholar 

  4. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016)

    Article  CAS  Google Scholar 

  5. Y. Yang, G. Chen, R. Zeng, A.M. Villarino, F.J. DiSalvo, R.B. van Dover, H.D. Abruna, Combinatorial studies of palladium-based oxygen reduction electrocatalysts for alkaline fuel cells. J. Am. Chem. Soc. 142, 3980–3988 (2020)

    Article  CAS  Google Scholar 

  6. R.S. Sherbo, A. Kurimoto, C.M. Brown, C.P. Berlinguette, Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019)

    Article  CAS  Google Scholar 

  7. X.F. Wu, H. Neumann, M. Beller, Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 40, 4986–5009 (2011)

    Article  CAS  Google Scholar 

  8. S. Dey, G.C. Dhal, Highly active palladium nanocatalysts for low-temperature carbon monoxide oxidation. Polytechnica 3, 1–25 (2019)

    Article  Google Scholar 

  9. M.S. Jin, H. Zhang, Z.X. Xie, Y.N. Xia, Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 5, 6352–6357 (2012)

    Article  CAS  Google Scholar 

  10. Z. Wang, H. Wang, Z. Zhang, G. Yang, T. He, Y. Yin, M. Jin, Synthesis of Pd nanoframes by excavating solid nanocrystals for enhanced catalytic properties. ACS Nano 11, 163–170 (2017)

    Article  CAS  Google Scholar 

  11. R. Mao, H. Lan, L. Yan, X. Zhao, H. Liu, J. Qu, Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials. Environ. Sci.: Nano 5, 2282–2292 (2018)

    CAS  Google Scholar 

  12. Y. Wang, D. Cao, M. Liu, X. Zhao, Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C3N4: the role of superoxide radical and singlet oxygen. Catal. Commun. 102, 85–88 (2017)

    Article  CAS  Google Scholar 

  13. M. Nasrollahzadeh, M. Sajjadi, M. Shokouhimehr, R.S. Varma, Recent developments in palladium (nano) catalysts supported on polymers for selective and sustainable oxidation processes. Coord. Chem. Rev. 397, 54–75 (2019)

    Article  CAS  Google Scholar 

  14. B. Van Vaerenbergh, J. Lauwaert, P. Vermeir, J. De Clercq, J.W. Thybaut, Synthesis and support interaction effects on the palladium nanoparticle catalyst characteristics. Adv. Catal. 65, 1–120 (2019)

    Google Scholar 

  15. S. Furukawa, Y. Yoshida, T. Komatsu, Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 4, 1441–1450 (2014)

    Article  CAS  Google Scholar 

  16. P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D.M. Chevrier, P. Zhang, Q. Guo, D. Zang, Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016)

    Article  CAS  Google Scholar 

  17. J. Biscarat, M. Bechelany, C. Pochat-Bohatier, P. Miele, Graphene-like BN/gelatin nanobiocomposites for gas barrier applications. Nanoscale 7, 613–618 (2015)

    Article  CAS  Google Scholar 

  18. T. Sainsbury, A. Satti, P. May, Z. Wang, I. Mcgovern, Y.K. Gun’Ko, J. Coleman, Oxygen radical functionalization of boron nitride nanosheets. J. Am. Chem. Soc. 134, 18758–18771 (2012)

    Article  CAS  Google Scholar 

  19. S. Lin, X. Ye, R.S. Johnson, H. Guo, First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation. J. Phys. Chem. C 117, 17319–17326 (2013)

    Article  CAS  Google Scholar 

  20. Y. Wang, J. Chen, L. Wang, H. Weng, Z. Wu, L. Jiao et al., γ-Radiation synthesis of ultrasmall noble metal (Pd, Au, Pt) nanoparticles embedded on boron nitride nanosheets for high-performance catalysis. Ceram. Int. 47, 26963–26970 (2021)

    Article  CAS  Google Scholar 

  21. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011)

    Article  CAS  Google Scholar 

  22. R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006)

    Article  CAS  Google Scholar 

  23. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)

    Article  CAS  Google Scholar 

  24. Q. Cai, D. Scullion, A. Falin, K. Watanabe, T. Taniguchi, Y. Chen, E.J.G. Santos, L.H. Li, Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale 9, 3059–3067 (2017)

    Article  CAS  Google Scholar 

  25. A. Griffin, A.H.B. Cunningham, D. Scullion, T. Tian, C.J. Shih, M. Gruening, J.F. Donegan, E.J.G. Santos, C. Backes, J.N. Coleman, Spectroscopic size and thickness metrics for liquid-exfoliated h-BN. Chem. Mater. 30, 1998–2005 (2018)

    Article  CAS  Google Scholar 

  26. M. Tamura, K. Kon, A. Satsuma, K.I. Shimizu, Volcano-curves for dehydrogenation of 2-propanol and hydrogenation of nitrobenzene by SiO2-supported metal nanoparticles catalysts as described in terms of a d-band model. ACS Catal. 2, 1904–1909 (2012)

    Article  CAS  Google Scholar 

  27. F.A. Harraz, S.E. El-Hout, H.M. Killa, I.A. Ibrahim, Palladium nanoparticles stabilized by polyethylene glycol: efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. J. Catal. 286, 184–192 (2012)

    Article  CAS  Google Scholar 

  28. F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, F. Zhang, J. Jin, X. Zhong, Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem. 13, 1238–1243 (2011)

    Article  CAS  Google Scholar 

  29. Z. Wang, C. Xu, G. Gao, X. Li, Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 4, 13644–13651 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the National Natural Science Foundation of China (Grant Nos. 51521001, 51832003).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WD and WM. The first draft of the manuscript was written by WD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guimin Zhang or Zhengyi Fu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or other disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1677 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Ma, W., Zhang, G. et al. Synthesis of boron nitride nanosheets incorporated with Pd nanoparticles for reduction of nitroaromatics. MRS Communications 12, 738–744 (2022). https://doi.org/10.1557/s43579-022-00222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00222-4

Keywords

Navigation