Skip to main content

Dielectric properties and microstructure of CCTO/SnO2 composite ceramics prepared by solid-state method

Abstract

The CCTO/SnO2 composite ceramics were fabricated by sintering at 1040°C for 8 h. The FESEM found that the grain size decreased sharply when the SnO2 addition amount reached 15 mol%. The dielectric spectra confirmed that the addition of SnO2 helps to improve the dielectric properties of CCTO, and the dielectric constants of 20 mol% SnO2 reached 1.74 × 106 and 4.2 × 105 at 20 Hz and 1 kHz, respectively. XPS found the coexistence of Cu+ and Ti3+ related to the defect compensation mechanism. Impedance spectroscopy confirms that the addition of SnO2 helps to improve the semiconductivity of CCTO, thereby enhancing the dielectric properties of CCTO.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Wang, K. Sun, Y. Qu, J. Qin, J. Tian, Y. Li, X. Li, X. Wang, R. Fan, TiN/CaCu3Ti4O12 binary ceramics with tunable and weakly negative permittivity. Mater. Lett. 283, 128824 (2021)

    CAS  Article  Google Scholar 

  2. V. Turchenko, V.G. Kostishin, S. Trukhanov, F. Damay, M. Balasoiu, B. Bozzo, I. Fina, V.V. Burkhovetsky, S. Polosan, M.V. Zdorovets, A.L. Kozlovskiy, K.A. Astapovich, A. Trukhanov, Structural features, magnetic and ferroelectric properties of SrFe10.8In1.2O19 compound. Mater. Res. Bull. 138, 111236 (2021)

    CAS  Article  Google Scholar 

  3. D.P. Samarakoon, R.N. Singh, Influence of alumina dopant and environment on the electrical properties of calcium copper titanate ceramics. J. Nanosci. Nanotechnol. 21, 2148 (2021)

    CAS  Article  Google Scholar 

  4. D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M.C. Mozzati, C.B. Azzoni, Role of doping and CuO segregation in improving the giant permittivity of CaCU3Ti4O12. J. Solid State Chem. 177, 4494 (2004)

    CAS  Article  Google Scholar 

  5. M. Ahmadipour, W.K. Cheah, M.F. Ain, K.V. Rao, Z.A. Ahmad, Effects of deposition temperatures and substrates on microstructure and optical properties of sputtered CCTO thin film. Mater. Lett. 210, 4 (2018)

    CAS  Article  Google Scholar 

  6. P. Kumar, D.C. Agrawal, Dielectric and optical properties of CaCu3Ti4O12 thin films containing Ag nanoparticles. Mater. Lett. 64, 350 (2010)

    CAS  Article  Google Scholar 

  7. Z. Tang, K. Ning, Z. Fu, Z. Lian, K. Wu, S. Huang, Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: deepening and broadening interface states. J. Mater. Sci. Technol. 108, 82 (2022)

    Article  Google Scholar 

  8. Y. Guo, J. Tan, J. Zhao, Influence of CTO additives on microstructure and electrical properties of CCTO ceramics. Mater. Chem. Phys. 278, 125659 (2022)

    CAS  Article  Google Scholar 

  9. L. Zhang, F. Song, X. Lin, D. Wang, High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Mater. Chem. Phys. 241, 122373 (2020)

    CAS  Article  Google Scholar 

  10. X. Ouyang, S.F. Huang, W.J. Zhang, P. Cao, Z.H. Huang, W. Gao, Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction. J. Solid State Chem. 211, 58 (2014)

    CAS  Article  Google Scholar 

  11. A.E. Smith, T.G. Calvarese, A.W. Sleight, M.A. Subramanian, An anion substitution route to low loss colossal dielectric CaCu3Ti4O12. J. Solid State Chem. 182, 409 (2009)

    CAS  Article  Google Scholar 

  12. V. Kumar, A. Kumar, M.K. Verma, S. Singh, S. Pandey, V.S. Rai, D. Prajapati, T. Das, N.B. Singh, K.D. Mandal, Investigation of dielectric and electrochemical behavior of CaCu3-xMnxTi4O12 (x=0, 1) ceramic synthesized through semi-wet route. Mater. Chem. Phys. 245, 122804 (2020)

    CAS  Article  Google Scholar 

  13. M. Ahmadipour, M. Arjmand, M.Z.A. Thirmizir, A.T. Le, S.L. Chiam, S.Y. Pung, Synthesis of core/shell-structured CaCu3Ti4O12/SiO(2)composites for effective degradation of rhodamine B under ultraviolet light. J. Mater. Sci. 31, 19587 (2020)

    Google Scholar 

  14. J. Zhao, M. Chen, Q. Tan, Embedding nanostructure and colossal permittivity of TiO2-covered CCTO perovskite materials by a hydrothermal route. J. Alloys Compd. 885, 160948 (2021)

    CAS  Article  Google Scholar 

  15. J. Tan, Y. Guo, J. Zhao, Microstructure and colossal permittivity of CaTiO3 ceramics covered with nano-sized CuO and TiO2 by the hydrothermal method. J. Mater. Chem. C 9, 8011 (2021)

    CAS  Article  Google Scholar 

  16. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002)

    CAS  Article  Google Scholar 

  17. L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12. Phys. Rev. B 65, 214112 (2002)

    Article  Google Scholar 

  18. A.A. Felix, M.O. Orlandi, J.A. Varela, Schottky-type grain boundaries in CCTO ceramics. Solid State Commun. 151, 1377 (2011)

    CAS  Article  Google Scholar 

  19. M.S. Ivanov, F. Amaral, V.A. Khomchenko, L.C. Costa, J.A. Paixao, A novel approach to study the conductivity behavior of CaCu3Ti4O12 using scanning probe microscopy technique. MRS Commun. 8, 932 (2018)

    CAS  Article  Google Scholar 

  20. M. Chinnathambi, A. Sakthisabarimoorthi, M. Jose, R. Robert, Study of the Electrical and Dielectric behaviour of selenium doped CCTO ceramics prepared by a facile sol-gel route. Mater. Chem. Phys. 272, 124970 (2021)

    CAS  Article  Google Scholar 

  21. X. Huang, H.W. Zhang, J. Li, Y.M. Lai, Influence of different dopant sites by lanthanum on the dielectric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci. 27, 11241 (2016)

    CAS  Google Scholar 

  22. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, Investigation of the dielectric properties and nonlinear electrical response of CaCu3Ti4O12 ceramics prepared by a chemical combustion method. J. Mater. Sci. 31, 4511 (2020)

    CAS  Google Scholar 

  23. F.A. Mohd Pabl, T.W. Na, S.M. Sharifuddin, M.S. Mat Nor, W.F.F. Wan Ali, M.F. Ain, J. Juliewatt, M.A. Sulaiman, Effect of calcination temperature to the dielectric properties of CaCu3Ti4O12 using enhanced microwave processing. J. Earth Environ. Sci. 596, 012039 (2020)

    Google Scholar 

  24. N.A. Zhuk, N.A. Sekushin, M.G. Krzhizhanovskaya, V.A. Belyy, R.I. Korolev, Electrical properties of Ni-doped CaCu3Ti4O12 ceramics. Solid State Ionics 364, 115634 (2021)

    Article  Google Scholar 

  25. D. Xu, X. Yue, J. Song, S. Zhong, J. Ma, L. Bao, L. Zhang, S. Du, Improved dielectric and non-ohmic properties of (Zn + Zr) codoped CaCu3Ti4O12 thin films. Ceram. Int. 45, 11421 (2019)

    CAS  Article  Google Scholar 

  26. W. Makcharoen, J. Tontrakoon, G. Rujijanagul, D.P. Cann, T. Tunkasiri, Effect of cesium and cerium substitution on the dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 38, S65 (2012)

    CAS  Article  Google Scholar 

  27. P. Mao, J. Wang, P. Xiao, L. Zhang, F. Kang, H. Gong, Colossal dielectric response and relaxation behavior in novel system of Zr4+ and Nb5+ co-substituted CaCu3Ti4O12 ceramics. Ceram. Int. 47, 111 (2021)

    CAS  Article  Google Scholar 

  28. J. Zhao, J. Liu, G. Ma, Preparation, characterization and dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 38, 1221 (2012)

    CAS  Article  Google Scholar 

  29. X.Y. Chen, B. Zhang, A.M. Chang, New negative temperature coefficient ceramics in Ca1-xYxCu3Ti3.9Zr0.1O12 system. J. Mater. Sci. 31, 1745 (2020)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (51562037) and Yunnan University Graduate Research and Innovation Fund (2020Z41). The authors thank Advanced Analysis and Measurement Center of Yunnan University for the sample testing service.

Author information

Authors and Affiliations

Authors

Contributions

JZ: Conceptualization, Methodology, Software, Funding acquisition; YG: Data curation, Writing—Original draft preparation, Visualization, Investigation, Writing—Reviewing and Editing; JT: Supervision, Software, Validation.

Corresponding author

Correspondence to Jingchang Zhao.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Tan, J. & Zhao, J. Dielectric properties and microstructure of CCTO/SnO2 composite ceramics prepared by solid-state method. MRS Communications (2022). https://doi.org/10.1557/s43579-022-00220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-022-00220-6

Keywords

  • Crystalline
  • X-ray diffraction (XRD)
  • Ceramic
  • Dielectric properties