Skip to main content
Log in

Electrical performance prediction of graphdiyne-C60 nanocomposite

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We investigated the field emission of graphdiyne-C60 nanocomposite by using first principle calculation. The results show that graphdiyne obtains good electrical performances such as high level of emission currents. The construction with C60 cluster and graphdiyne can take full advantages of the curvature effect and the tip effect of C60 cluster which induces local charge improvement. It shows that the C60 cluster can strengthen the field emission of graphdiyne-C60 nanocomposite. It implies that the graphdiyne-C60 nanofabrication could have a potential application for field emission electron sources in the future.

Graphical abstract

A novel graphdiyne-C60 nanocomposite is proposed for field emission electron sources. We investigated field emission mechanism of graphdiyne-C60 nanocomposite. We detected that graphdiyne has a high level of emission currents with a low external electric field. We detect the curvature effect and the tip effect of C60 cluster that induce local charge enhancement. It implies the graphdiyne-C60 nanofabrication maybe a candidate of field emission electron sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. K.P.C. Vollhardt, N.E. Schore, J.R. Mohrig, Organic Chemistry: Structure and Function (WH Freeman, New York, 1999)

    Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C 60: buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  CAS  Google Scholar 

  3. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  5. G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, D.B. Zhu, Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010)

    Article  CAS  Google Scholar 

  6. F. Diederich, Carbon scaffolding-building acetylenic allcarbon and carbon-rich compounds. Nature 369, 199–207 (1994)

    Article  CAS  Google Scholar 

  7. M.M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 80(3), 519–532 (2008)

    Article  CAS  Google Scholar 

  8. Y.J. Kim, J.H. Lee, G.C. Yi, Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 95(21), 213101 (2009)

    Article  Google Scholar 

  9. X. Wang, S.M. Tabakman, H. Dai, Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130(26), 8152–8153 (2008)

    Article  CAS  Google Scholar 

  10. D.H. Wang, D. Choi, J. Li, Z.G. Yang, Z. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4), 907–914 (2009)

    Article  CAS  Google Scholar 

  11. W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21(10), 3422–3427 (2011)

    Article  CAS  Google Scholar 

  12. H. Kim, D.H. Seo, S.W. Kim, J. Kim, K. Kang, Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49(1), 326–332 (2011)

    Article  CAS  Google Scholar 

  13. S.M. Paek, E.J. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2008)

    Article  Google Scholar 

  14. S. Zhang, Y. Zhang, S. Huang, H. Liu, P. Wang, H. Tian, First-principles study of field emission properties of graphene-ZnO nanocomposite. J. Phys. Chem. C 114(45), 19284–19288 (2010)

    Article  CAS  Google Scholar 

  15. M.M. Haley, S.C. Brand, J.J. Pak, Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. Engl. 36(8), 836–838 (1997)

    Article  CAS  Google Scholar 

  16. G. Mpourmpakis, G.E. Froudakis, A.N. Andriotis, M. Menon, Carbon-nanotube tips with edge made of a transition metal. Appl. Phys. Lett. 87(19), 193105 (2005)

    Article  Google Scholar 

  17. B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)

    Article  CAS  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  Google Scholar 

  19. B. Delley, Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 100(15), 6107–6110 (1996)

    Article  CAS  Google Scholar 

  20. J. Gong, Y. Tang, P. Yang, Investigation on field emission properties of graphdiyne–BN composite. J. Mol. Struct. 1064, 32–36 (2014)

    Article  CAS  Google Scholar 

  21. J. Gong, H. Yang, P. Yang, Investigation on field emission properties of N-doped graphene-carbon nanotube composites. Compos. B 75, 250–255 (2015)

    Article  CAS  Google Scholar 

  22. C. Kim, B. Kim, S.M. Lee, C. Jo, Y.H. Lee, Effect of electric field on the electronic structures of carbon nanotubes. Appl. Phys. Lett. 79(8), 1187–1189 (2001)

    Article  CAS  Google Scholar 

  23. S. Zhang, Y. Zhang, S. Huang, L. Qiao, S. Yu, W. Zheng, Field-emission mechanism of island-shaped graphene-BN nanocomposite. J. Phys. Chem. C 115(19), 9471–9476 (2011)

    Article  CAS  Google Scholar 

  24. S. Suzuki, Y. Watanabe, Y. Homma, S. Fukuba, S. Heun, A. Locatelli, Work functions of individual single-walled carbon nanotubes. Appl. Phys. Lett. 85(1), 127–129 (2004)

    Article  CAS  Google Scholar 

  25. R.E. Haufler, L.S. Wang, L.P.F. Chibante, C. Jin, J. Conceicao, Y. Chai, R.E. Smalley, Fullerene triplet state production and decay: R2PI probes of C60 and C70 in a supersonic beam. Chem. Phys. Lett. 179(5), 449–454 (1991)

    Article  CAS  Google Scholar 

  26. M. Khazaei, K.A. Dean, A.A. Farajian, Y. Kawazoe, Field emission signature of pentagons at carbon nanotube caps. J. Phys. Chem. C 111(18), 6690–6693 (2007)

    Article  CAS  Google Scholar 

  27. J. Gong, Y. Tang, H. Yang, P. Yang, Theoretical investigations of sp-sp2 hybridized capped graphyne nanotubes. Chem. Eng. Sci. 134, 217–221 (2015)

    Article  CAS  Google Scholar 

  28. J. Wang, H. Yang, P. Yang, Photoelectric properties of 2D ZnO, Gra, Si Materials and their Heterojunctions. Compos. B 233, 109645 (2022)

    Article  CAS  Google Scholar 

  29. B. Yang, H. Yang, T. Li et al., Thermal transport at 6H-SiC/graphene buffer layer/GaN heterogeneous interface. Appl. Surf. Sci. 536, 147828 (2021)

    Article  CAS  Google Scholar 

  30. F. Buonocore, F. Trani, D. Ninno, A.D. Matteo, G. Cantele, G. Iadonisi, Ab initio calculations of electron affinity and ionization potential of carbon nanotubes. Nanotechnology 19(2), 025711 (2008)

    Article  CAS  Google Scholar 

  31. Y. Tang, H. Yang, P. Yang, Investigation on the contact between graphdiyne and Cu (111) surface. Carbon 117, 246–251 (2017)

    Article  CAS  Google Scholar 

  32. C.Q. Sun, S.Y. Fu, Y.G. Nie, Dominance of broken bonds and unpaired nonbonding π-electrons in the band gap expansion and edge states generation in graphene nanoribbons. J. Phys. Chem. C 112(48), 18927–18934 (2008)

    Article  CAS  Google Scholar 

  33. H. Yang, Y. Tang, P. Yang, Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions. Nanoscale 11, 14155–14163 (2019)

    Article  CAS  Google Scholar 

  34. A. Maiti, J. Andzelm, N. Tanpipat, P. von Allmen, Effect of adsorbates on field emission from carbon nanotubes. Phys. Rev. Lett. 87(15), 155502 (2001)

    Article  CAS  Google Scholar 

  35. C. Kim, B. Kim, S.M. Lee, C. Jo, Y.H. Lee, Electronic structures of capped carbon nanotubes under electric fields. Phys. Rev. B 65(16), 165418 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Six talent peaks project in Jiangsu Province(JXQC-006), the support of A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the High-Performance Computing Platform of Jiangsu University during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Guo or Ping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Gao, S., Zhang, Z. et al. Electrical performance prediction of graphdiyne-C60 nanocomposite. MRS Communications 12, 729–733 (2022). https://doi.org/10.1557/s43579-022-00217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00217-1

Keywords

Navigation