Skip to main content
Log in

Synthesis, elastic properties, and high-temperature stability of multicomponent spinel oxide

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Reports on unique properties achieved with high-entropy alloys have motivated the application of the multicomponent approach to oxide materials. We have applied this methodology to an alumina-based spinel oxide, resulting in the synthesis of polycrystalline (Mg1/5Ni1/5Co1/5Cu1/5Zn1/5)Al2O4. Samples were made by the polymeric steric entrapment technique and uniaxially hot-pressed to obtain dense pellets. Resonant ultrasound spectroscopy was used to evaluate the elastic behavior, allowing for a direct comparison of the mechanical properties of the multicomponent spinel to those of traditional MgAl2O4. High-temperature X-ray diffraction was used to investigate the high-temperature phase stability and thermal expansion behavior of (Mg1/5Ni1/5Co1/5Cu1/5Zn1/5)Al2O4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Data availability

The data that support the findings of this study are available from the corresponding author, B.L.M, upon reasonable request.

References

  1. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16(1), 494 (2014)

    Article  CAS  Google Scholar 

  2. D.C. Harris, History of development of polycrystalline optical spinel in the U.S. Wind. Dome Technol. Mater. IX 5786(May 2005), 1 (2005)

    CAS  Google Scholar 

  3. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides. Nat. Commun. 6(1), 8485 (2015)

    Article  CAS  Google Scholar 

  4. J. Chen, W. Liu, J. Liu, X. Zhang, M. Yuan, Y. Zhao, J. Yan, M. Hou, J. Yan, M. Kunz, N. Tamura, H. Zhang, Z. Yin, Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5. J. Phys. Chem. C 123(29), 17735 (2019)

    Article  CAS  Google Scholar 

  5. A.J. Wright, J. Luo, A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective. J. Mater. Sci. 55(23), 9812 (2020)

    Article  CAS  Google Scholar 

  6. Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. J. Adv. Ceram. 9(3), 303 (2020)

    Article  CAS  Google Scholar 

  7. H. Chen, Z. Zhao, H. Xiang, F.Z. Dai, W. Xu, K. Sun, J. Liu, Y. Zhou, High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: a novel high temperature stable thermal barrier material. J. Mater. Sci. Technol. 48, 57 (2020)

    Article  Google Scholar 

  8. F. Li, L. Zhou, J.-X. Liu, Y. Liang, G.-J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram. 8(3), 576 (2019)

    Article  Google Scholar 

  9. K. Ren, Q. Wang, G. Shao, X. Zhao, Y. Wang, Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scr. Mater. 178, 382 (2020)

    Article  CAS  Google Scholar 

  10. A.J. Wright, Q. Wang, S.-T. Ko, K.M. Chung, R. Chen, J. Luo, Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides. Scr. Mater. 181, 76 (2020)

    Article  CAS  Google Scholar 

  11. H.S.C. O’Neill, W.A. Dollase, C.R. Ross, Temperature dependence of the cation distribution in nickel aluminate (NiAl2O4) spinel: a powder XRD study. Phys. Chem. Miner. 18(5), 302 (1991)

    Article  Google Scholar 

  12. HSt.C. O’Neill, M. James, W.A. Dollase, S.A.T. Redfern, Temperature dependence of the cation distribution in CuAl2O4 spinel. Eur. J. Mineral. 17(4), 581 (2005)

    Article  Google Scholar 

  13. C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO (x = 0.2) entropy-stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100(6), 2732 (2017)

    Article  CAS  Google Scholar 

  14. D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693 (2017)

    Article  CAS  Google Scholar 

  15. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22 (1953)

    Article  CAS  Google Scholar 

  16. B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46(2), 544 (2013)

    Article  CAS  Google Scholar 

  17. A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, R.G. Leisure, Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys. B: Condens. Matter 183(1–2), 1 (1993)

    Article  CAS  Google Scholar 

  18. X. Ren, Z. Tian, J. Zhang, J. Wang, Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scr. Mater. 168, 47 (2019)

    Article  CAS  Google Scholar 

  19. A.J. Wright, Q. Wang, S.-T. Ko, K.M. Chung, R. Chen, J. Luo, Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlores. Scr. Mater. (2019). https://doi.org/10.1016/j.scriptamat.2020.02.011

    Article  Google Scholar 

  20. R.L. Stewart, R.C. Bradt, Fracture of polycrystalline MgAl2O4. J. Am. Ceram. Soc. 63(11–12), 619 (1980)

    Article  CAS  Google Scholar 

  21. J.A. Purton, N.L. Allan, M.Y. Lavrentiev, I.T. Todorov, C.L. Freeman, Computer simulation of mineral solid solutions. Chem. Geol. 225(3–4), 176 (2006)

    Article  CAS  Google Scholar 

  22. F. Tielens, M. Calatayud, R. Franco, J.M. Recio, J. Pérez-Ramírez, C. Minot, Periodic DFT study of the structural and electronic properties of bulk CoAl2O4 spinel. J. Phys. Chem. B 110(2), 988 (2006)

    Article  CAS  Google Scholar 

  23. D.R. Petrak, D.T. Rankin, R. Ruh, R.D. Sisson, Effect of porosity on the elastic moduli of CaO, CoO–MgO solid solutions, and CoAl2O4. J. Am. Ceram. Soc. 58(1–2), 78 (1975)

    Article  CAS  Google Scholar 

  24. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013)

    Article  Google Scholar 

  25. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, M. Asta, Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2(1), 150009 (2015)

    Article  Google Scholar 

  26. C.Y. Yang, F.P. Dai, R. Zhang, L.H. Li, Q. Zhou, Elastic, phonon and thermodynamic properties of ZnAl2O4 and ZnAl2S4 compounds from first-principles calculations. Solid State Sci. 40, 7 (2015)

    Article  CAS  Google Scholar 

  27. H.J. Reichmann, S.D. Jacobsen, Sound velocities and elastic constants of ZnAl2O4 spinel and implications for spinel-elasticity systematics. Am. Mineral. 91(7), 1049 (2006)

    Article  CAS  Google Scholar 

  28. C.M. Fang, C.K. Loong, G.A. De Wijs, G. De With, Phonon spectrum of (formula presented) spinel from inelastic neutron scattering and first-principles calculations. Phys. Rev. B 66(14), 1 (2002)

    Article  Google Scholar 

  29. M.H. Nguyen, S.J. Lee, W.M. Kriven, Synthesis of oxide powders by way of a polymeric steric entrapment precursor route. J. Mater. Res. 14(8), 3417 (1999)

    Article  CAS  Google Scholar 

  30. A.G. Mehmet, M.H. Nguyen, W.M. Kriven, Polymerized organic-inorganic synthesis of mixed oxides. J. Am. Ceram. Soc. 82(3), 556 (1999)

    Google Scholar 

Download references

Acknowledgments

B.L.M. acknowledges the support of the Center for Materials Processing, a Tennessee Higher Education Commission (THEC) supported Accomplished Center of Excellence. D.G.M acknowledges support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF9069. Powder XRD and microscopy was performed at the Joint Institute for Advanced Materials (JIAM) Diffraction Facility and Microscopy Facility, respectively, located at the University of Tennessee, Knoxville. This material is based upon work partially supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number DE-NA0003180. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or limited, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brianna L. Musicó or Veerle Keppens.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 866 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musicó, B.L., Smith, J.P., Wright, Q. et al. Synthesis, elastic properties, and high-temperature stability of multicomponent spinel oxide. MRS Communications 12, 723–728 (2022). https://doi.org/10.1557/s43579-022-00210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00210-8

Keywords

Navigation