Skip to main content
Log in

Detection of cocoyl sarcosine utilizing an extended-gate-type organic field-effect transistor functionalized with a copper(II)-dipicolylamine complex

  • Early Career Materials Researcher Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This paper reports a chemical sensor utilizing an extended-gate-type organic field-effect transistor (EG-OFET) for cocoyl sarcosine (CS) detection. The extended-gate electrode of the EG-OFET has been modified with a self-assembled monolayer of a dipicolylamine copper(II) complex (Cu2+-dpa) that can capture CS through a coordination bond. The transfer characteristics of the EG-OFET shifted with increasing CS concentration in the presence of interferents. Furthermore, the reproducibility and reusability of the EG-OFET sensor device were revealed with a cycle test. Owing to industrial applications of CS in heat exchangers, the EG-OFET will be used to maintain heat equipment in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Raw data available through contact with the corresponding author.

References

  1. O.V. Ryzhenkov, A.V. Kurshakov, A. Ryzhenkov, M. Dasaev, S. Grigoryev, On intensification of heat exchange in steam condensers made of stainless steel and brass. Int. J. Eng. Innov. Technol. 8, 2290 (2019)

    Google Scholar 

  2. J.W. Rose, Dropwise condensation theory and experiment: a review. Proc. Inst. Mech. Eng. A 216, 115 (2002)

    Article  CAS  Google Scholar 

  3. J. Jasper, D. Disci-Zayed, B. A. De, M. Urschey, WO2021245743A1 (2021). Accessed 28 Apr 2022

  4. S.E. Kaskah, M. Pfeiffer, H. Klock, H. Bergen, G. Ehrenhaft, P. Ferreira, J. Gollnick, C.B. Fischer, Surface protection of low carbon steel with N-acyl sarcosine derivatives as green corrosion inhibitors. Surf. Interfaces 9, 70 (2017)

    Article  CAS  Google Scholar 

  5. R. Lanigan, Final report on the safety assessment of Cocoyl Sarcosine, Lauroyl Sarcosine, Myristoyl Sarcosine, Oleoyl Sarcosine, Stearoyl Sarcosine, Sodium Cocoyl Sarcosinate, Sodium Lauroyl Sarcosinate, Sodium Myristoyl Sarcosinate, Ammonium Cocoyl Sarcosinate, and Ammonium Lauroyl Sarcosinate. Int. J. Toxicol. 20, 1 (2001)

    Article  CAS  Google Scholar 

  6. N. Cernei, O. Zitka, M. Ryvolova, V. Adam, M. Masarik, J. Hubalek, R. Kizek, Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int. J. Electrochem. Sci. 7, 4286 (2012)

    CAS  Google Scholar 

  7. V. Yamkamon, B. Phakdee, S. Yainoy, T. Suksrichawalit, T. Tatanandana, P. Sangkum, W. Eiamphungporn, Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI J. 17, 467 (2018)

    Google Scholar 

  8. H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643 (2010)

    Article  CAS  Google Scholar 

  9. J. Mei, Y. Diao, A.L. Appleton, L. Fang, Z. Bao, Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724 (2013)

    Article  CAS  Google Scholar 

  10. H. Sirringhaus, 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014)

    Article  CAS  Google Scholar 

  11. Y. Wen, Y. Liu, Y. Guo, G. Yu, W. Hu, Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem. Rev. 111, 3358 (2011)

    Article  CAS  Google Scholar 

  12. E. Macchia, R.A. Picca, K. Manoli, C. Di Franco, D. Blasi, L. Sarcina, N. Ditaranto, N. Cioffi, R. Österbacka, G. Scamarcio, F. Torricelli, L. Torsi, About the amplification factors in organic bioelectronic sensors. Mater. Horiz. 7, 999 (2020)

    Article  CAS  Google Scholar 

  13. T. Someya, B. Pal, J. Huang, H.E. Katz, Organic semiconductor devices with enhanced field and environmental responses for novel applications. MRS Bull. 33, 690 (2008)

    Article  CAS  Google Scholar 

  14. X. Dong, Y. Shi, W. Huang, P. Chen, L.J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649 (2010)

    Article  CAS  Google Scholar 

  15. R. Kubota, Y. Sasaki, T. Minamiki, T. Minami, Chemical sensing platforms based on organic thin-film transistors functionalized with artificial receptors. ACS Sens. 4, 2571 (2019)

    Article  CAS  Google Scholar 

  16. Q. Zhou, M. Wang, S. Yagi, T. Minami, Extended gate-type organic transistor functionalized by molecularly imprinted polymer for taurine detection. Nanoscale 13, 100 (2021)

    Article  CAS  Google Scholar 

  17. T. Minamiki, Y. Sasaki, S. Su, T. Minami, Development of polymer field-effect transistor-based immunoassays. Polym. J. 51, 1 (2019)

    Article  CAS  Google Scholar 

  18. T. Minami, T. Minamiki, Y. Sasaki, Development of enzymatic sensors based on extended-gate-type organic field-effect transistors. Electrochemistry 86, 303 (2018)

    Article  CAS  Google Scholar 

  19. M.J. Kim, K.M.K. Swamy, K.M. Lee, A.R. Jagdale, Y. Kim, S.-J. Kim, K.H. Yoo, J. Yoon, Pyrophosphate selective fluorescent chemosensors based on coumarin–DPA–Cu(ii) complexes. Chem. Commun. 7215 (2009)

  20. D. Mandler, S. Kraus-Ophir, Self-assembled monolayers (SAMs) for electrochemical sensing. J. Solid State Electrochem. 15, 1535 (2011)

    Article  CAS  Google Scholar 

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. C.01 (Wallingford, CT, 2016)

  22. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  CAS  Google Scholar 

  23. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  CAS  Google Scholar 

  24. J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999 (2005)

    Article  CAS  Google Scholar 

  25. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012)

    Article  CAS  Google Scholar 

  26. C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, E. Hénon, Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19, 17928 (2017)

    Article  CAS  Google Scholar 

  27. T. Lu, Q. Chen, Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539 (2022)

    Article  CAS  Google Scholar 

  28. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33 (1996)

    Article  CAS  Google Scholar 

  29. R. Mitobe, Y. Sasaki, W. Tang, Q. Zhou, X. Lyu, K. Ohshiro, M. Kamiko, T. Minami, Multi-oxyanion detection by an organic field-effect transistor with pattern recognition techniques and its application to quantitative phosphate sensing in human blood serum. ACS Appl. Mater. Interfaces. 14, 22903 (2022)

    Article  CAS  Google Scholar 

  30. P. Bergveld, Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88, 1 (2003)

    Article  CAS  Google Scholar 

  31. T. Kajisa, W. Li, T. Michinobu, T. Sakata, Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor. BioSens. Bioelectron. 117, 810 (2018)

    Article  CAS  Google Scholar 

  32. J.N. Miller, J.C. Miller, Statistics and chemometrics for analytical chemistry, 5th edn. (Pearson/Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  33. Y. Qi, Y. Kawaguchi, Z. Lin, M. Ewing, R.N. Christensen, J.L. Zakin, Enhanced heat transfer of drag reducing surfactant solutions with fluted tube-in-tube heat exchanger. Int. J. Heat Mass Transf. 44, 1495 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TM gratefully acknowledges the financial support from the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP21H01780, JP20K21204, JP20H05207, and JP22H04524), and JST CREST (Grant No. JPMJCR2011). The data shown in Figure S2 were measured at Komaba Analysis Core, Institute of Industrial Science, The University of Tokyo, and data analysis was supported by Drs. Atsushi Fukuda and Masao Kamiko. The authors acknowledge to their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Minami.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1192 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Zhou, Q., Mitobe, R. et al. Detection of cocoyl sarcosine utilizing an extended-gate-type organic field-effect transistor functionalized with a copper(II)-dipicolylamine complex. MRS Communications 12, 592–596 (2022). https://doi.org/10.1557/s43579-022-00203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00203-7

Keywords

Navigation