Skip to main content
Log in

CaO/Yb2O3-doped SiAlONs synthesized with crystalline and amorphous Si3N4 using spark plasma sintering

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The present work is aimed at exploring new combinations of precursors in the synthesis of SiAlONs for improved performance. The effects of amorphous and crystalline Si3N4 together with CaO and Yb2O3 (nano-sized) metal oxides were considered to study the resulting microstructure and thermomechanical properties. They were synthesized using ultrasonic probe sonication and spark plasma sintering by adding nano-sized precursors, including SiO2, AlN, and Al2O3. The formation of SiAlONs was based on compositions according to general formula Mm/vSi12−(m+n)Alm+nOnN16−n for m = 1.1 and n = 0.6. The type of Si3N4 and selected metal oxides were found crucial for tailoring the properties of SiAlONs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. T. Waqar, S.S. Akhtar, A.F.M. Arif, A.S. Hakeem, Design and development of ceramic-based composites with tailored properties for cutting tool inserts. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.09.009

    Article  Google Scholar 

  2. C.K. Jeong, Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials. MRS Commun. (2020). https://doi.org/10.1557/mrc.2020.48

    Article  Google Scholar 

  3. F. Wang, B. Dong, N. Ke, M. Yang, R. Qian, J. Wang, J. Yu, L. Hao, L. Yin, X. Xu, S. Agathopoulos, Superhydrophobic β-Sialon-mullite ceramic membranes with high performance in water treatment. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.11.200

    Article  Google Scholar 

  4. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review. J. Eur. Ceram. Soc. (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  5. T. Ayode Otitoju, P. Ugochukwu Okoye, G. Chen, Y. Li, M. Onyeka Okoye, S. Li, Advanced ceramic components: materials, fabrication, and applications. J. Ind. Eng. Chem. (2020). https://doi.org/10.1016/j.jiec.2020.02.002

    Article  Google Scholar 

  6. A.A.M. El-Amir, A.A. El-Maddah, E.M.M. Ewais, S.M. El-Sheikh, I.M.I. Bayoumi, Y.M.Z. Ahmed, Sialon from synthesis to applications: an overview. J. Asian Ceram. Soc. (2021). https://doi.org/10.1080/21870764.2021.1987613

    Article  Google Scholar 

  7. B.A. Ahmed, A.S. Hakeem, T. Laoui, R.M.A. Khan, M.M. Al Malki, A. Ul-Hamid, F.A. Khalid, N. Bakhsh, Effect of precursor size on the structure and mechanical properties of calcium-stabilized sialon/cubic boron nitride nanocomposites. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.09.032

    Article  Google Scholar 

  8. C.A. Wood, H. Zhao, Y.B. Cheng, Microstructural development of calcium α-SiAlON ceramics with elongated grains. J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1551-2916.1999.tb20079.x

    Article  Google Scholar 

  9. A.S. Hakeem, M. Khan, B.A. Ahmed, A. Al Ghanim, F. Patel, M.A. Ehsan, S. Ali, T. Laoui, S. Ali, Synthesis and characterization of alkaline earth and rare earth doped sialon Ceramics by spark plasma sintering. Int. J. Refract. Met. Hard Mater. (2021). https://doi.org/10.1016/j.ijrmhm.2021.105500

    Article  Google Scholar 

  10. A. Sheriff Adeniyi, B. Anjum Ahmed, A. Saeed Hakeem, F. Patel, A. Idris Bakare, A. Ul-Hamid, A. Azam Khan, M. Ali Ehsan, T. Irfan Khan, The property characterization of α-sialon/ni composites synthesized by spark plasma sintering. Nanomaterials (2019). https://doi.org/10.3390/nano9121682

    Article  Google Scholar 

  11. D.V. Dudina, B.B. Bokhonov, E.A. Olevsky, Fabrication of porous materials by spark plasma sintering: a review. Materials (Basel) (2019). https://doi.org/10.3390/ma12030541

    Article  Google Scholar 

  12. Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, S.L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108662

    Article  Google Scholar 

  13. M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, H.U.J. Hennicke, R. Kirchner, T. Kessel, Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. Sinter. Appl. (2013). https://doi.org/10.5772/53706

    Article  Google Scholar 

  14. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. (2014). https://doi.org/10.1002/adem.201300409

    Article  Google Scholar 

  15. J.Q. Li, Q.Z. Chen, Y.L. Lan, C.H. Zhang, Y. Li, L.P. Hu, F.S. Liu, W.Q. Ao, H.P. Xie, High mechanical properties of β-SiAlON/TiC0.3N0.7 ceramic composite prepared by pressureless spark plasma sintering. J. Asian Ceram. Soc. (2021). https://doi.org/10.1080/21870764.2021.1874642

    Article  Google Scholar 

  16. B.A. Ahmed, T. Laoui, A.S. Hakeem, Development of calcium stabilized nitrogen rich α-sialon ceramics along the Si3N4:1/2Ca3N2:3AlN line using spark plasma sintering. J. Adv. Ceram. (2020). https://doi.org/10.1007/s40145-020-0400-y

    Article  Google Scholar 

  17. X. Xu, D. Wang, Z. Rao, J. Wu, X. Liu, C. Zhang, Preparation and thermal shock resistance of sialon/SiC composite ceramics used for solar absorber. J. Aust. Ceram. Soc. (2021). https://doi.org/10.1007/s41779-020-00537-2

    Article  Google Scholar 

  18. F. Ye, Z. Hou, H. Zhang, L. Liu, Y. Zhou, Spark plasma sintering of cBN/β-SiAlON composites. Mater. Sci. Eng. A (2010). https://doi.org/10.1016/j.msea.2010.04.034

    Article  Google Scholar 

  19. A.S. Hakeem, J. Grins, S. Esmaeilzadeh, La–Si–O–N glasses. Part I. Extension of the glass forming region. J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.04.002

    Article  Google Scholar 

  20. P. Warrier, A. Teja, Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res. Lett. (2011). https://doi.org/10.1186/1556-276X-6-247

    Article  Google Scholar 

  21. T.U. Eindhoven, D. Version, Preparation, characterisation and properties of Ca-alphasialon and Ca-alpha/beta-sialon composite materials. Mater. Sci. (2000). https://doi.org/10.6100/IR536388

    Article  Google Scholar 

  22. C. Xu, Effects of particle size and matrix grain size and volume fraction of particles on the toughening of ceramic composite by thermal residual stress. Ceram. Int. (2005). https://doi.org/10.1016/j.ceramint.2004.06.019

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the SURE program, IRC-HES and King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Saeed Hakeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, H.S., Hakeem, A.S., Qadeer, A. et al. CaO/Yb2O3-doped SiAlONs synthesized with crystalline and amorphous Si3N4 using spark plasma sintering. MRS Communications 12, 295–301 (2022). https://doi.org/10.1557/s43579-022-00172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00172-x

Keywords

Navigation