Skip to main content
Log in

Mechanical properties of thermally evaporated germanium (Ge) and barium fluoride (BaF2) thin-films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2022

This article has been updated

Abstract

Elastic modulus and hardness of thin-films are critically important in determining the behaviour of free-standing actuatable microstructures. In this study, nanoindentation has been used to investigate the mechanical properties of thermally evaporated Ge and BaF2 thin-films. Nanoindentation experiments indicate that Ge and BaF2 thin-films are characterised by a reduced modulus of 95 ± 3 GPa and 33 ± 9 GPa, respectively, and hardness of 4.6 ± 0.4 GPa and 0.75 ± 0.4 GPa, respectively. The elastoplastic response of both thin-films was predominantly elastic for low indentation loads, but exhibited plasticity ≥ 60% for indentation loads approaching 8 mN. Indentation-induced creep deformation was found to be limited to ≤ 5%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Change history

References

  1. M. Martyniuk, K.K.M.B.D. Silva, G. Putrino, H. Kala, D.K. Tripathi, G.S. Gill, L. Faraone, Optical microelectromechanical systems technologies for spectrally adaptive sensing and imaging. Adv. Funct. Mater. (2021). https://doi.org/10.1002/ADFM.202103153

    Article  Google Scholar 

  2. H.A. Macleod, Thin-film optical filters. In Thin-Film Optical Filters, 4th edn (2010), pp. 1–782. https://doi.org/10.1201/9781420073034

  3. L.P. Schuler, J.S. Milne, J.M. Dell, L. Faraone, MEMS-based microspectrometer technologies for NIR and MIR wavelengths. J. Phys. D 42(133001), 1–13 (2009). https://doi.org/10.1088/0022-3727/42/13/133001

    Article  CAS  Google Scholar 

  4. M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, S. Kurth, Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review. Proc. SPIE 9760(97600H), 1–20 (2016). https://doi.org/10.1117/12.2209288

    Article  Google Scholar 

  5. H. Mao, D.K. Tripathi, Y. Ren, K.K.M.B.D. Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J.M. Dell, L. Faraone, Large-area MEMS tunable Fabry-Perot filters for multi/hyperspectral infrared imaging. IEEE J. Sel. Top. Quantum Electron. 23(2), 2700208 (2017). https://doi.org/10.1109/JSTQE.2016.2643782

    Article  Google Scholar 

  6. H. Mao, K.K.M.B.D. Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, B.D. Nener, J.M. Dell, L. Faraone, MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging. J. Microelectromech. Syst. 25(1), 227–235 (2016). https://doi.org/10.1109/JMEMS.2015.2509058

    Article  CAS  Google Scholar 

  7. H. Mao, K.K.M.B.D. Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J.M. Dell, L. Faraone, Ge/ZnS-based micromachined Fabry-Perot filters for optical MEMS in the longwave infrared. J. Microelectromech. Syst. 24(6), 2109–2116 (2015). https://doi.org/10.1109/JMEMS.2015.2474858

    Article  CAS  Google Scholar 

  8. J.S. Milne, J.M. Dell, A.J. Keating, L. Faraone, Widely tunable MEMS-based Fabry-Perot filter. J. Microelectromech. Syst. 18(4), 905–913 (2009). https://doi.org/10.1109/JMEMS.2009.2024793

    Article  Google Scholar 

  9. M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, T. Gessner, Dual-band MEMS Fabry–Perot filter with two movable reflectors for mid- and long-wave infrared microspectrometers. In 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11, 2011, pp. 2538–2541. https://doi.org/10.1109/TRANSDUCERS.2011.5969764

  10. M. Ebermann, M. Meinig, S. Kurth, K. Hiller, E. Gittler, N. Neumann, Tiny mid- and long-wave infrared spectrometer module with a MEMS dual-band Fabry–Pérot filter. In IRS2 Proceedings—SENSOR + TEST Conferences, 2011, pp. 94–99

  11. A.J. Keating, J. Antoszewski, K.K.M.B.D. Silva, K.J. Winchester, T. Nguyen, J.M. Dell, C.A. Musca, L. Faraone, P. Mitra, J.D. Beck, M.R. Skokan, J.E. Robinson, Design and characterization of Fabry-Pérot MEMS-based short-wave infrared microspectrometers. J. Electron. Mater. 37(12), 1811–1820 (2008). https://doi.org/10.1007/s11664-008-0526-0

    Article  CAS  Google Scholar 

  12. T. Amotchkina, M. Trubetskov, D. Hahner, V. Pervak, Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 59(5), A40 (2020). https://doi.org/10.1364/ao.59.000a40

    Article  CAS  Google Scholar 

  13. H.W. Icenogle, B.C. Platt, W.L. Wolfe, Refractive indexes and temperature coefficients of germanium and silicon. Appl. Opt. 15(10), 2348–2351 (1976). https://doi.org/10.1364/AO.15.002348

    Article  CAS  Google Scholar 

  14. W. Kaiser, W.G. Spitzer, R.H. Kaiser, L.E. Howarnr, Infrared Properties of CaF2, SrF2, and BaF2. Phys. Rev. 127(6), 1950–1954 (1962)

    Article  CAS  Google Scholar 

  15. M.R. Querry, Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet. CROEC-CR-88009 (Chemical Research Develeopment and Engineering Center, Aberdeen Proving Ground, 1987)

  16. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  17. J.S. Ponraj, E. Buffagni, G. Deivasigamani, A. Dakshanamoorthy, M. Bosi, C. Ferrari, G. Attolini, Studies of nanoindentation and residual stress analysis of Ge/GaAs epilayers. Semicond. Sci. Technol. 30(5), 055004 (2015). https://doi.org/10.1088/0268-1242/30/5/055004

    Article  CAS  Google Scholar 

  18. M. Papakyriakou, X. Wang, S. Xia, Characterization of stress-diffusion coupling in lithiated germanium by nanoindentation. Exp. Mech. 58(4), 613–625 (2018). https://doi.org/10.1007/s11340-018-0382-7

    Article  CAS  Google Scholar 

  19. J.J. Wortman, R.A. Evans, Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965). https://doi.org/10.1063/1.1713863

    Article  CAS  Google Scholar 

  20. D.J. Morris, S.B. Myers, R.F. Cook, Sharp probes of varying acuity: instrumented indentation and fracture behavior. J. Mater. Res. 19(1), 165–175 (2004). https://doi.org/10.1557/jmr.2004.19.1.165

    Article  CAS  Google Scholar 

  21. Quartz Crystal (INFICON). https://www.inficon.com/en/products/quartz-crystal. Accessed 28 July 2021

  22. Front Load Single and Dual Sensors (INFICON, 2014). www.inficon.com. Accessed 8 April 2020

  23. G.S. Gill, D.K. Tripathi, A. Keating, G. Putrino, K. K.M.B.D. Silva, M. Martyniuk, L. Faraone, Ge/BaF2 thin-films for surface micromachined mid-wave and long-wave infrared reflectors. J. Opt. Microsyst. 2(1), 011002 (2022). https://doi.org/10.1117/1.JOM.2.1.011002

  24. Y.-G. Jung, B.R. Lawn, M. Martyniuk, H. Huang, X.Z. Hu, Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19(10), 3076–3080 (2004). https://doi.org/10.1557/JMR.2004.0380

    Article  CAS  Google Scholar 

  25. P. Feltham, R. Banerjee, Theory and application of microindentation in studies of glide and cracking in single crystals of elemental and compound semiconductors. J. Mater. Sci. 27(6), 1626–1632 (1992). https://doi.org/10.1007/BF00542926

    Article  CAS  Google Scholar 

  26. B. Haberl, J.E. Bradby, M.V. Swain, J.S. Williams, P. Munroe, Phase transformations induced in relaxed amorphous silicon by indentation at room temperature. Appl. Phys. Lett. 85(23), 5559–5561 (2004). https://doi.org/10.1063/1.1832757

    Article  CAS  Google Scholar 

  27. A.B. Mann, D. Van Heerden, J.B. Pethica, P. Bowes, T.P. Weihs, Contact resistance and phase transformations during nanoindentation of silicon. Philos. Mag. A 82(10), 1922–1929 (2002). https://doi.org/10.1080/01418610208235704

    Article  Google Scholar 

  28. A. Kailer, Y.G. Gogotsi, K.G. Nickel, Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81(7), 3057–3063 (1997). https://doi.org/10.1063/1.364340

    Article  CAS  Google Scholar 

  29. T.A. Michalske, J.E. Houston, Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46(2), 391–396 (1998). https://doi.org/10.1016/S1359-6454(97)00270-X

    Article  CAS  Google Scholar 

  30. D.F. Bahr, D.E. Kramer, W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46(10), 3605–3617 (1998). https://doi.org/10.1016/S1359-6454(98)00024-X

    Article  CAS  Google Scholar 

  31. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe, Nanoindentation-induced deformation of Ge. Appl. Phys. Lett. 80, 2651 (2002). https://doi.org/10.1063/1.1469660

    Article  CAS  Google Scholar 

  32. D.J. Oliver, J.E. Bradby, J.S. Williams, M.V. Swain, P. Munroe, Giant pop-ins and amorphization in germanium during indentation. J. Appl. Phys. 101, 43524 (2007). https://doi.org/10.1063/1.2490563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work used the facilities of the Western Australian node of the NCRIS-enabled Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and micro-fabrication facilities for Australia’s researchers, and support from the Western Australian Government’s Department of Jobs, Tourism, Science and Innovation. This research was supported financially by Australian Research Council Discovery Project Grants. The authors also thankfully acknowledge the facilities, the scientific and technical assistance of the Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia for the Scholarship for International Research Fees and The Microelectronics Research Group (MRG) for an Ad Hoc Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh Gill.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

This article was updated to correct the graphical abstract.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, G.S., Jones, C., Tripathi, D.K. et al. Mechanical properties of thermally evaporated germanium (Ge) and barium fluoride (BaF2) thin-films. MRS Communications 12, 112–118 (2022). https://doi.org/10.1557/s43579-021-00149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00149-2

Keywords

Navigation