Skip to main content
Log in

The thermal oxidation of hexagonal boron nitride single crystals: Dry and ambient air compared

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (hBN), a two dimensional (2D) material is used to protect the 2D materials from environment through encapsulation due to its oxidation resistant ability. High temperature electronics based on graphene and hBN hetrostructures have the potential to operate in extreme environments. Thus, it is critical to investigate the oxidation behavior of bulk hBN single crystals at high temperatures in different environments. This study reports on the thermal oxidation of single hBN crystals in dry air, from 800 to 1100°C, for 20 to 60 min, and is compared to the oxidation in ambient air. Oxidation in both dry and ambient air produced etch pits and particles. Pit formation was localized and non-uniform across the hBN crystal surfaces. Increasing the temperature and duration in dry air did not significantly change the surface pit sizes, that was in contrast to the thermal oxidation in ambient air (which contains a small water concentration). Elemental analysis by SEM/EDX revealed the major elements of the particles were boron and oxygen.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. C. Sevik, A. Kinaci, J. Haskins, T. Çagin, Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)

    Article  Google Scholar 

  2. L.H. Li, Y. Chen, Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 26, 2594–2608 (2016)

    Article  CAS  Google Scholar 

  3. A. Lipp, K. Schwetz, K. Hunold, Hexagonal boron nitride: Fabrication, properties and applications. J. Eur. Ceram. Soc. 5, 3–9 (1989)

    Article  CAS  Google Scholar 

  4. J. Eichler, C. Lesniak, Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28, 1105–1109 (2008)

    Article  CAS  Google Scholar 

  5. Q. Weng, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016)

    Article  CAS  Google Scholar 

  6. Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang, K. Watanabe, T. Taniguchi, Y. Chen, E. Santos, L.H. Li, High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5(6), eaav0129 (2019)

    Article  Google Scholar 

  7. C. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    Article  CAS  Google Scholar 

  8. K. Kim, A. Hsu, X. Jia, S. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)

    Article  CAS  Google Scholar 

  9. V. Shautsova, A. Gilbertson, N.C. Black, S. Maier, L. Cohen, Hexagonal boron nitride assisted transfer and encapsulation of large area CVD graphene. Sci. Rep. 6, 30210 (2016)

    Article  CAS  Google Scholar 

  10. J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7, 16801–16822 (2017)

    Article  CAS  Google Scholar 

  11. R. Decker, Y. Wang, V. Brar, W. Regan, H. Tsai, Q. Wu, W. Gannett, A. Zettl, M. Crommie, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011)

    Article  CAS  Google Scholar 

  12. F. Mahvash, S. Eissa, T. Bordjiba, A.C. Tavares, T. Szkopek, M. Siaj, Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci. Rep. 7, 42139 (2017)

    Article  CAS  Google Scholar 

  13. Y. Chen, J. Zou, S. Campbell, G.L. Caer, Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004)

    Article  CAS  Google Scholar 

  14. L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8(2), 1457–1462 (2014)

    Article  CAS  Google Scholar 

  15. M. Scardamaglia, V. Boix, G. D’Acunto, C. Struzzi, N. Reckinger, X. Chen, A. Shivayogimath, T. Booth, J. Knudsen, Comparative study of copper oxidation protection with graphene and hexagonal boron nitride. Carbon 171, 610–617 (2021)

    Article  CAS  Google Scholar 

  16. L.H. Li, T. Xing, Y. Chen, R. Jones, Boron nitride nanosheets for metal protection. Adv. Mater. Interfaces 1, 1300132 (2014)

    Article  Google Scholar 

  17. G. Wang, R. Pandey, S. Karna, Physics and chemistry of oxidation of two-dimensional nanomaterials by molecular oxygen. Wiley Interdiscip. Rev. 7, 1280 (2017)

    Google Scholar 

  18. X. Hou, Z. Yu, Z. Chen, K. Chou, B. Zhao, The reaction mechanism and kinetics of α-BN powder in wet air at 1273 K. J. Am. Ceram. Soc. 96, 1877–1882 (2013)

    Article  CAS  Google Scholar 

  19. N. Jacobson, S. Farmer, A. Moore, H. Sayir, High-temperature oxidation of boron nitride: I. Monolithic boron nitride. J. Am. Ceram. Soc. 82, 393–398 (1999)

    Article  CAS  Google Scholar 

  20. C. Cofer, J. Economy, Oxidative and hydrolytic stability of boron nitride—A new approach to improving the oxidation resistance of carbonaceous structures. Carbon 33, 389–395 (1995)

    Article  CAS  Google Scholar 

  21. Y. Liao, K. Tu, X. Han, L. Hu, J. Connell, Z. Chen, Y. Lin, Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes. Sci. Rep. 5, 14510 (2015)

    Article  CAS  Google Scholar 

  22. N. Kostoglou, K. Polychronopoulou, C. Rebholz, Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 112, 42–45 (2015)

    Article  CAS  Google Scholar 

  23. M. Šiškins, C. Mullan, S. Son, J. Yin, K. Watanabe, T. Taniguchi, D. Ghazaryan, K. Novoselov, A. Mishchenko, High-temperature electronic devices enabled by hBN-encapsulated graphene. Appl. Phys. Lett. 114, 123104 (2019)

    Article  Google Scholar 

  24. N. Khan, E. Nour, J. Mondoux, S. Liu, J. Edgar, Y. Berta, Hexagonal boron nitride single crystal thermal oxidation and etching in air: An atomic force microscopy study. MRS Adv. 4, 601–608 (2019)

    Article  CAS  Google Scholar 

  25. K. Oda, K. Aoki, S. Inada, M. Nagae, T. Yoshio, Oxidation of boron nitride powder in wet oxygen. J. Ceram. Soc. Jpn. 111, 81–82 (2003)

    Article  CAS  Google Scholar 

  26. Z. Yu, X. Hou, Z. Chen, K. Chou, Effect of water-vapor content on reaction rate of hexagonal BN powder at 1273 K. High Temp. Mater. Proc. 32(3), 275–280 (2013)

    Article  CAS  Google Scholar 

  27. S. Liu, R. He, L. Xue, J. Li, B. Liu, J.H. Edgar, Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018)

    Article  CAS  Google Scholar 

  28. J. Li, C. Elias, Z. Ye, D. Evans, S. Liu, R. He, G. Cassabois, B. Gil, P. Valvin, B. Liu, J.H. Edgar, Single crystal growth of monoisotopic hexagonal boron nitride from a Fe–Cr flux. J. Mater. Chem. C 8, 9931–9935 (2020)

    Article  CAS  Google Scholar 

  29. J. Caldwell, T. Anderson, J. Culbertson, G. Jernigan, K. Hobart, F. Kub, M. Tadjer, J. Tedesco, J. Hite, M. Mastro, R.M. Ward, C. Eddy, P. Campbell, D.K. Gaskill, Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4(2), 1108–1114 (2010)

    Article  CAS  Google Scholar 

  30. J. Edgar, S. Liu, T. Hoffman, Y. Zhang, M. Twigg, N. Bassim, S. Liang, N. Khan, Defect sensitive etching of hexagonal boron nitride single crystals. J. Appl. Phys. 122, 225110 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank our collaborators Elisabeth Mansfield, and Jason D. Holm from National Institute of Science and Technology for their help with elemental analysis by scanning electron microscope with energy dispersive x-ray spectroscopy.

Funding

This project was supported by National Science Foundation Award CHE –1621665. Support for hexagonal boron nitride crystal growth from the Office of Naval Research Award N00014-20-1-2474 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3717 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Li, J. & Edgar, J.H. The thermal oxidation of hexagonal boron nitride single crystals: Dry and ambient air compared. MRS Communications 12, 74–82 (2022). https://doi.org/10.1557/s43579-021-00143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00143-8

Keywords

Navigation