Skip to main content
Log in

Disclosing the role of solidification dynamics on the structural features, magnetic properties and dynamic magnetic behavior of a NiMnSn Heusler alloy

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report here a systematic investigation of the structural features, magnetic properties and dynamic magnetic behavior of Ni50Mn37Sn13 Heusler alloy solidified by using ceramic and metallic molds, which allow us to modify the solidification dynamics of the system without atmosphere control. Our findings reveal interesting modifications, not just in the structural properties of the material, but also in the quasi-static and dynamic magnetic properties of the samples. This analysis amplifies the spectrum of Ni50Mn37Sn13 Heusler alloys obtained using the induction furnace technique without a controlled atmosphere, placing such samples as interesting sensor elements in magnetic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.D. Nguyen, T.H. Do, H.Y. Nguyen, T.T. Pham, H.D. Nguyen, T.N.N. Nguyen, D.T. Tran, T.L. Phan, S.C. Yu, Influence of fabrication conditions on giant magnetocaloric effect of Ni–Mn–Sn ribbons. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025011 (2013). https://doi.org/10.1088/2043-6262/4/2/025011

    Article  CAS  Google Scholar 

  2. A. Deltell, A.E.-M.A. Mohamed, P. Álvarez-Alonso, M. Ipatov, J.P. Andrés, J.A. González, T. Sánchez, A. Zhukov, M.L. Escoda, J.J. Suñol, R. López Antón, Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbons. J. Mater. Res. Technol. 12, 1091–1103 (2021). https://doi.org/10.1016/j.jmrt.2021.03.049

    Article  CAS  Google Scholar 

  3. F. Tian, K. Cao, Y. Zhang, Y. Zeng, R. Zhang, T. Chang, C. Zhou, M. Xu, X. Song, S. Yang, Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys. Sci. Rep. 6, 30801 (2016). https://doi.org/10.1038/srep30801

    Article  CAS  Google Scholar 

  4. G.L. Fraga, P. Pureur, D. Brandão, Spontaneous magnetoimpedance in the Heusler compounds Pd2MnSn and Pd2MnSb near the Curie temperature. Solid State Commun. 124, 7–10 (2002). https://doi.org/10.1016/S0038-1098(02)00476-3

    Article  CAS  Google Scholar 

  5. Y. Aydogdu, A.S. Turabi, M. Kok, A. Aydogdu, Z.D. Yakinci, M.A. Aksan, M.E. Yakinci, H.E. Karaca, The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. J. Alloys Compd. 683, 339–345 (2016). https://doi.org/10.1016/j.jallcom.2016.05.108

    Article  CAS  Google Scholar 

  6. K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata, Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy. Appl. Phys. Lett. 88, 122507 (2006). https://doi.org/10.1063/1.2187414

    Article  CAS  Google Scholar 

  7. Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu, Y.W. Du, Large magnetic entropy changes in the Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2385147

    Article  Google Scholar 

  8. M.H. Phan, H.X. Peng, Giant magnetoimpedance materials: Fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008). https://doi.org/10.1016/j.pmatsci.2007.05.003

    Article  Google Scholar 

  9. O.N. Miroshkina, V.V. Sokolovskiy, M.A. Zagrebin, S.V. Taskaev, V.D. Buchelnikov, Theoretical approach to investigation of the magnetic and magnetocaloric properties of Heusler Ni–Mn–Ga alloys. Phys. Solid State. 62, 785–792 (2020). https://doi.org/10.1134/S1063783420050182

    Article  CAS  Google Scholar 

  10. V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, G.J. Cuello, Correlation between atomic order and the characteristics of the structural and magnetic transformations in Ni–Mn–Ga shape memory alloys. Acta Mater. 55, 3883–3889 (2007). https://doi.org/10.1016/j.actamat.2007.03.001

    Article  CAS  Google Scholar 

  11. D. Masnur, V. Malau. Suyitno, The influence of mold material on cooling curve, solidification parameters, and micro-hardness of Al–6wt%Si in unidirectional solidification. IOP Conf. Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/547/1/012014

    Article  Google Scholar 

  12. Y.B. Yang, X.B. Ma, X.G. Chen, J.Z. Wei, R. Wu, J.Z. Han, H.L. Du, C.S. Wang, S.Q. Liu, Y.C. Yang, Y. Zhang, J.B. Yang, Structure and exchange bias of Ni 50 Mn 37 Sn 13 ribbons. J. Appl. Phys. 111, 07A916 (2012). https://doi.org/10.1063/1.3672244

    Article  CAS  Google Scholar 

  13. D. Wu, S. Xue, J. Frenzel, G. Eggeler, Q. Zhai, H. Zheng, Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons. Mater. Sci. Eng. A 534, 568–572 (2012). https://doi.org/10.1016/j.msea.2011.12.009

    Article  CAS  Google Scholar 

  14. D.V. Maheswar Repaka, X. Chen, R.V. Ramanujan, R. Mahendiran, Magnetic field dependence of electrical resistivity and thermopower in Ni50Mn37Sn13 ribbons. AIP Adv. (2015). https://doi.org/10.1063/1.4930592

    Article  Google Scholar 

  15. F. de Souza Silva, M.R. de Brito, M.A. Correa, F. Bohn, R.B. da Silva, T.A. dos Passos, R.A. Torquato, R.M. Gomes, D.F. de Oliveira, Feasibility of developing a Heusler NiMnSn alloy via induction casting without controlled atmosphere. MRS Commun. 5, 6 (2021). https://doi.org/10.1557/s43579-021-00047-7

    Article  Google Scholar 

  16. A.G. Varzaneh, P. Kameli, T. Amiri, K.K. Ramachandran, A. Mar, I.A. Sarsari, J.L. Luo, T.H. Etsell, H. Salamati, Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13−Cu alloys. J. Alloys Compd. 708, 34–42 (2017). https://doi.org/10.1016/j.jallcom.2017.02.278

    Article  CAS  Google Scholar 

  17. M.A. Corrêa, F. Bohn, R.B. da Silva, R.L. Sommer, Magnetoimpedance effect at the high frequency range for the thin film geometry: Numerical calculation and experiment. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4904960

    Article  Google Scholar 

  18. T. Freire, C. Salvador, M.A. Correa, C.G. Bezerra, C. Chesman, A.B. Oliveira, F. Bohn, Theoretical and experimental study of Fe/Cr nanometric quasiperiodic multilayers. Solid State Commun. (2011). https://doi.org/10.1016/j.ssc.2010.11.018

    Article  Google Scholar 

  19. T. Ali, L. Gigli, A. Ali, M.N. Khan, Structural transformation and inverse magnetocaloric effect in Ni50Mn33In17. J. Magn. Magn. Mater. 473, 370–375 (2019). https://doi.org/10.1016/j.jmmm.2018.10.036

    Article  CAS  Google Scholar 

  20. Y. Murakami, Y. Watanabe, T. Kanaizuka, S. Kachi, Magnetic properties and phase change of Ni3−yMnySn Alloy. Trans. Japan Inst. Met. 22, 551–557 (1981). https://doi.org/10.2320/matertrans1960.22.551

    Article  CAS  Google Scholar 

  21. J.D. Santos, T. Sanchez, P. Alvarez, M.L. Sanchez, J.L. Sánchez Llamazares, B. Hernando, L. Escoda, J.J. Suñol, R. Varga, Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J. Appl. Phys. 3, 26 (2008). https://doi.org/10.1063/1.2832330

    Article  CAS  Google Scholar 

  22. A.A. Prasanna, S. Ram, Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11–x (x ≤ 2) alloys. Sci. Technol. Adv. Mater. (2013). https://doi.org/10.1088/1468-6996/14/1/015004

    Article  Google Scholar 

  23. A.M. Pérez-Sierra, J. Pons, R. Santamarta, P. Vermaut, P. Ochin, Solidification process and effect of thermal treatments on Ni–Co–Mn–Sn metamagnetic shape memory alloys. Acta Mater. 93, 164–174 (2015). https://doi.org/10.1016/j.actamat.2015.04.027

    Article  CAS  Google Scholar 

  24. P. Czaja, A. Wierzbicka-Miernik, Ł Rogal, Segregation and microstructure evolution in chill cast and directionally solidified Ni–Mn–Sn metamagnetic shape memory alloys. J. Cryst. Growth 492, 50–59 (2018). https://doi.org/10.1016/j.jcrysgro.2018.04.006

    Article  CAS  Google Scholar 

  25. C. Tan, Z. Tai, K. Zhang, X. Tian, W. Cai, Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping. Sci. Rep. 7, 43387 (2017). https://doi.org/10.1038/srep43387

    Article  CAS  Google Scholar 

  26. P. Zhang, T.L. Phan, N.H. Dan, T.D. Thanh, S.C. Yu, Magnetocaloric and critical behavior in the austenitic phase of Gd-doped Ni50Mn37Sn13 Heusler alloys. J. Alloys Compd. 615, S335–S339 (2014). https://doi.org/10.1016/j.jallcom.2013.12.072

    Article  CAS  Google Scholar 

  27. R.D. McMichael, D.J. Twisselmann, A. Kunz, Localized ferromagnetic resonance in inhomogeneous thin films. Phys. Rev. Lett. 90, 227601 (2003). https://doi.org/10.1103/PhysRevLett.90.227601

    Article  CAS  Google Scholar 

  28. S.C. Shin, M.L. Cofield, R.H.D. Nuttall, Structure and ferromagnetic resonance of Tb/FeCo multilayer thin films. J. Appl. Phys. 61, 4326–4328 (1987). https://doi.org/10.1063/1.338462

    Article  CAS  Google Scholar 

  29. J.M. Barandiaran, A. Garcia-Arribas, D. de Cos, Transition from quasistatic to ferromagnetic resonance regime in giant magnetoimpedance. J. Appl. Phys. 99, 103904 (2006)

    Article  Google Scholar 

  30. A. Layadi, Exchange anisotropy: A ferromagnetic resonance study. Phys. Rev. B 66, 184423 (2002). https://doi.org/10.1103/PhysRevB.66.184423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danniel Ferreira de Oliveira.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Brito, M.R., de Souza Silva, F., Correa, M.A. et al. Disclosing the role of solidification dynamics on the structural features, magnetic properties and dynamic magnetic behavior of a NiMnSn Heusler alloy. MRS Communications 12, 62–67 (2022). https://doi.org/10.1557/s43579-021-00141-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00141-w

Keywords

Navigation