Skip to main content
Log in

Critical structural invariant during high-pressure solidification of copper

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation (MD) has been conducted to investigate the pressure effect on microstructure of copper during rapid solidification. The pressure increases the onset temperature (Tc) of nucleation but decreases the energy of atoms and the lattice constant of the final face-centered cubic crystal. Before temperature decreases to Tc the average coordination number (ACN) of atoms and the percentage of topologically close-packed atoms (PTCP) increase, while the number of types of the largest standard clusters (KLaSC) decreases and that of the topologically close-packed (KTCP) atoms is about the same. Interestingly they are pressure-independent constants at Tc, with KLaSC = 3300, ACN = 13.08, PTCP = 18.3%, and KTCP = 33 in the super-cooled copper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. W. Klement, R.H. Willens, P.O.L. Duwez, Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869–870 (1960)

    Article  CAS  Google Scholar 

  2. Y.Q. Cheng, E. Ma, Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011)

    Article  CAS  Google Scholar 

  3. L. Zhong, J.W. Wang, H.W. Sheng, Z. Zhang, S.X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014)

    Article  CAS  Google Scholar 

  4. N. Funamori, K. Tsuji, Pressure-induced structural change of liquid silicon. Phys. Rev. Lett. 88, 255508 (2002)

    Article  Google Scholar 

  5. H. Li, F. Pederiva, Structural study of local order in quenched lead under high pressures. Chem. Phys. 304, 261–271 (2004)

    Article  Google Scholar 

  6. J.W.E. Drewitt, S. Jahn, C. Sanloup, C. de Grouchy, G. Garbarino, L. Hennet, Development of chemical and topological structure in aluminosilicate liquids and glasses at high pressure. J. Phys. Condens. Matter 27, 105103 (2015)

    Article  Google Scholar 

  7. Y.C. Hu, P.F. Guan, Q. Wang, Y. Yang, H.Y. Bai, W.H. Wang, Pressure effects on structure and dynamics of metallic glass-forming liquid. J. Chem. Phys. 146, 024507 (2017)

    Article  Google Scholar 

  8. D.A. Zocco, D.Y. Tütün, J.J. Hamlin, J.R. Jeffries, S.T. Weir, Y.K. Vohra, M.B. Maple, High pressure transport studies of the LiFeAs analogs CuFeTe2 and Fe2As. Supercond. Sci. Technol. 25, 084018 (2012)

    Article  Google Scholar 

  9. J.J. Hamlin, J.R. Jeffries, N.P. Butch, P. Syers, D.A. Zocco, S.T. Weir, Y.K. Vohra, J. Paglione, M.B. Maple, High pressure transport properties of the topological insulator Bi2Se3. J. Phys. Condens. Matter 24, 435–441 (2011)

    Google Scholar 

  10. R.P. Dias, I.F. Silvera, Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017)

    Article  CAS  Google Scholar 

  11. X.D. Liu, P. Dalladay-Simpson, R.T. Howie, B. Li, E. Gregoryanz, Comment on observation of the Wigner-Huntington transition to metallic hydrogen. Science 357, 2286 (2017)

    Article  Google Scholar 

  12. W.L. Johnson, Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999)

    Article  CAS  Google Scholar 

  13. W.H. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, Y.S. Yao, Microstructural transformation in a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 11292 (2001)

    Article  Google Scholar 

  14. H.W. Sheng, E. Ma, H.Z. Liu, J. Wen, Pressure tunes atomic packing in metallic glass. Appl. Phys. Lett. 88, 171906 (2006)

    Article  Google Scholar 

  15. L. Qi, L.F. Dong, S.L. Zhang, X.B. Chen, R.P. Liu, P.K. Liaw, Glass formation and local structure evolution in rapidly cooled Pd-Ni alloy melt under high presssure. Phys. Lett. A 372, 708–711 (2008)

    Article  CAS  Google Scholar 

  16. L. Wang, C.X. Peng, Y.Q. Wang, Y.N. Zhang, Vitrification and crystallization of metallic liquid under pressures. J. Phys. Condens. Matter 18, 7559–7568 (2006)

    Article  CAS  Google Scholar 

  17. E. Schwedgler, G. Galli, F. Gygi, Water under pressure. Phys. Rev. Lett. 84, 2429 (2000)

    Article  Google Scholar 

  18. T. Kenichi, High-pressure structural study of barium to 90 GPa. Phys. Rev. B 50, 16238–16246 (2019)

    Article  Google Scholar 

  19. Y. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, Transparent dense sodium. Nature 458, 182–185 (2009)

    Article  CAS  Google Scholar 

  20. A.R. Oganov, Y. Ma, Y. Xu, I. Errea, A. Bergara, A.O. Lyakhov, Exotic behavior and crystal structures of calcium under pressure. Proc. Natl. Acad. Sci. USA 107, 7646–7651 (2010)

    Article  CAS  Google Scholar 

  21. H. Olijnyk, W.B. Holzapfel, High-pressure structural phase transition in Mg. Phys. Rev. B 31, 4682–4683 (1985)

    Article  CAS  Google Scholar 

  22. P.F. Li, G.Y. Gao, Y.C. Wang, Y.M. Ma, Crystal structures and exotic behavior of magnesium under pressure. J. Chem. Phys. C 114, 21745–21749 (2010)

    Article  CAS  Google Scholar 

  23. T. Watanuki, A. Machida, T. Ikeda, K. Aoki, H. Kaneko, T. Shobu, T.J. Sato, A.P. Tsai, Pressure-induced phase transitions in the Cd-Yb periodic approximant to a quasicrystal. Phys. Rev. Lett. 96, 105702 (2006)

    Article  Google Scholar 

  24. B.T. Wang, P. Zhang, H.Y. Liu, W.D. Li, P. Zhang, First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium. J. Appl. Phys. 109, 063514 (2011)

    Article  Google Scholar 

  25. H.T. Zhang, Y.F. Mo, Z.A. Tian, R.S. Liu, L.L. Zhou, Z.Y. Hou, The effect of pressure on the crystallization of rapidly supercooled zirconium melts. Phys. Chem. Chem. Phys. 19, 12310–12320 (2017)

    Article  CAS  Google Scholar 

  26. X.Y. Xu, Y. Zheng, G.T. Zhang, Z. Ke, H. Wu, Q.J. Ding, X.P. Lu, Effect of WC addition and cooling rate on microstructure, magnetic and mechanical properties of Ti(C0.6, N0.4)-WC-Mo-Ni cermets. Int. J. Refract. Met. Hard Mater. 84, 105001 (2019)

    Article  CAS  Google Scholar 

  27. M.K. Jacobsen, N. Velisavljevic, S.V. Sinogeikin, Pressure-induced kinetics of the α to ω transition in zirconium. J. Appl. Phys. 118, 025902 (2015)

    Article  Google Scholar 

  28. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  29. H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, M.W. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011)

    Article  Google Scholar 

  30. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  CAS  Google Scholar 

  31. S. Nose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)

    Article  CAS  Google Scholar 

  32. M. Parrinello, A.J. Rahman, Polymorphic transitions in single crystal: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)

    Article  CAS  Google Scholar 

  33. Z.A. Tian, R.S. Liu, K.J. Dong, A.B. Yu, A new method for analysing the local structures of disordered systems. Europhys. Lett. 96, 36001–36006 (2011)

    Article  Google Scholar 

  34. Z.A. Tian, K.J. Dong, A.B. Yu, A method for structural analysis of disordered particle systems. AIP Conf. Proc. 1542, 373–376 (2013)

    Article  Google Scholar 

  35. Z.A. Tian, K.J. Dong, A.B. Yu, Local rotational symmetry in the packing of uniform spheres. Phys. Chem. Chem. Phys. 19, 14588–14595 (2017)

    Article  CAS  Google Scholar 

  36. Z.Z. Wu, Y.F. Mo, L. Lang, A.B. Yu, Q. Xie, R.S. Liu, Z.A. Tian, Topologically close-packed characteristic of amorphous Tantalum. Phys. Chem. Chem. Phys. 20, 28088–28104 (2018)

    Article  CAS  Google Scholar 

  37. L. Lang, H.Q. Deng, Z.A. Tian, F. Gao, W.Y. Hu, D.D. Wen, Y.F. Mo, The effect of Mo addition on structure and glass forming ability of Ni-Zr alloys. J. Alloys Compd. 775, 1184–1198 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors give grateful thanks for the support of the National Natural Science Foundation of China (Grant Nos. 12072110, 51661005 and U1612002), and it was also supported by the GHfund B (20210702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-An Tian or Wang-Yu Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7728 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, XX., Tian, ZA. & Hu, WY. Critical structural invariant during high-pressure solidification of copper. MRS Communications 12, 45–50 (2022). https://doi.org/10.1557/s43579-021-00138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00138-5

Keywords

Navigation