Skip to main content
Log in

Low-viscosity single phase acid system for acid fracturing in deep carbonate reservoirs

  • Recent Advances in the Chemistry and Materials for Hydrocarbon Recovery Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A comprehensive reaction kinetics study was conducted on a new single phase acid system comprised of a pre-engineered blend of an alkyl sulfonic acid and a strong mineral acid. The experiments were performed at 3000 psi and temperature range (180–350°F) using a rotating disk apparatus. The diffusion coefficient was found to be similar to that of 15 wt% HCl-emulsified acid systems. The single phase acid is a blend of two aqueous acids; therefore, the preparation is fast, and the resulted quality is consistent. The low viscosity helps reduce friction losses when pumping at high rates through tubular, maximizing the downhole pressure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Abbreviations

A :

The pre-exponential factor (constant for each chemical reaction)

A c :

Cross-sectional area of the disk, cm2

A 0 :

Initial surface area of the disk, cm2

C b :

Reactant concentration in the bulk solution, gmole/cm3

C s :

Concentration of H+ on the surface (gmole/cm3)

D e :

Effective diffusion coefficient, cm2/s

E a :

The reaction activation energy, kcal/gmole

(−E a/R):

The slope of the straight-line plot of kr as a function of absolute temperature

J mt :

Mass transfer rate of HCl from the bulk to the disk (gmole/cm2 s)

k :

Specific reaction rate (gmole/cm2 s) (gmole/cm3)n

k o :

The pre-exponential factor (frequency factor) in gmole(1m) cm(3 m−2)s1

k mt :

Mass transfer coefficient (cm/s)

n :

Reaction order, dimensionless

RH + :

Initial dissolution rate, gmole/s cm2

R :

Universal gas constant, 8.31 J/(mole.°K)

T :

The absolute temperature (in degree Kelvin)

φ:

Core porosity, fraction

ν :

Kinematic viscosity, cm2/s

ω :

Disk rotational speed, rad/s

References

  1. R. Aguilera, Can. Petrol. Technol. 49(08), 53 (2010). https://doi.org/10.2118/139846-PA

    Article  CAS  Google Scholar 

  2. B.B. Williams, D.E. Nierode, JPT 24(07), 849 (1972). https://doi.org/10.2118/3720-PA

    Article  CAS  Google Scholar 

  3. C.P. Ezeakacha, S. Salehi, A. Ghalambor, H. Bi, in SPE International Conference and Exhibition on Formation Damage Control. OnePetro (2018).https://doi.org/10.2118/189471-MS

  4. P. Kasza, M. Dziadkiewicz, M. Czupski, in SPE International Symposium and Exhibition on Formation Damage Control. OnePetro (2006). https://doi.org/10.2118/98261-MS

  5. H.A. Nasr-El-Din, H.A. Al-Anazi, S.K. Mohamed, SPEPF 15(3), 176 (2000). https://doi.org/10.2118/65069-PA

    Article  CAS  Google Scholar 

  6. T.O. Allen, A.P. Roberts, Production Operations, vol. 1 & 2 (Penn Well Books, Tulsa, 1989)

    Google Scholar 

  7. F.F. Chang, H.A. Nasr-El-Din, T. Lindvig, X.W. Qui, in SPE Annual Technical Conference and Exhibition. OnePetro (2008). https://doi.org/10.2118/116601-MS

  8. W.R. Dill, B.R. Keeney, in SPE Annual Fall Technical Conference and Exhibition. OnePetro (1978). https://doi.org/10.2118/7567-MS

  9. H.A. Nasr-El-Din, S.M. Driweesh, G.A. Muntasheri, in SPE International Improved Oil Recovery Conference in Asia Pacific. OnePetro (2003). https://doi.org/10.2118/84925-MS

  10. M.G. Bernadiner, K.E. Thompson, H.S. Fogler, SPEPE 7(4), 350 (1992). https://doi.org/10.2118/21035-PA

    Article  CAS  Google Scholar 

  11. J. Mou, M. Liu, K. Zheng, S. Zhang, SPEPO 30(02), 121 (2015). https://doi.org/10.2118/173898-PA

    Article  CAS  Google Scholar 

  12. M. Yu, M.A. Mahmoud, H.A. Nasr-El-Din, SPEJ 16(04), 993 (2011). https://doi.org/10.2118/128047-PA

    Article  CAS  Google Scholar 

  13. S.H. Al-Mutairi, H.A. Nasr-EI-Din, A.D. Hill, A.D. Al-Aamri, SPEJ 14(4), 606 (2009). https://doi.org/10.2118/112454-PA

    Article  CAS  Google Scholar 

  14. A.J. Cairns, G.A. Al-Muntasheri, M.A. Sayed, L. Fu, E.P. Giannelis, in SPE International Conference and Exhibition on Formation Damage Control. OnePetro (2016). https://doi.org/10.2118/178967-MS

  15. M.A. Sayed, A.I. Assem, H.A. Nasr-El-Din, SPEPO 29(01), 29 (2014). https://doi.org/10.2118/152844-PA

    Article  Google Scholar 

  16. C.N. Fredd, H.S. Fogler, SPEJ 3(1), 34 (1998). https://doi.org/10.2118/31074-PA

    Article  Google Scholar 

  17. C.N. Fredd, H.S. Fogler, J. Colloid Interface Sci. 204(1), 187 (1998). https://doi.org/10.1006/jcis.1998.5535

    Article  CAS  Google Scholar 

  18. M. Jamialahmadi, H. Mullersteinhagen, Heat Transf. Eng. 12(4), 19 (1991). https://doi.org/10.1080/01457639108939760

    Article  CAS  Google Scholar 

  19. S.M. Reyath, H.A. Nasr-El-Din, S. Rimassa,in SPE International Symposium on Oilfield Chemistry. OnePetro (2015).https://doi.org/10.2118/173794-MS

  20. D. Abdrazakov, M. Panga, C. Daeffler, D. Tulebayev, in SPE International Conference and Exhibition on Formation Damage Control. OnePetro (2018).https://doi.org/10.2118/189559-MS

  21. M.A. Sayed, A.J. Cairns, B. Aldakkan, A.M. Gomaa, K.R. Al-Noaimi, in Offshore Technology Conference. OnePetro (2018). https://doi.org/10.4043/28838-MS

  22. A.J. Cairns, K.L. Hull, M.A. Sayed, in Chemistry Solutions to Challenges in the Petroleum Industry, Copyright© 2019 American Chemical Society. https://doi.org/10.1021/bk-2019-1320

  23. S. Portier, L. Andre. F-D Vuataz, Review on chemical stimulation techniques in oil. (2007)

  24. J. de Rozieres, F.F. Chang, R.B. Sulivan, in SPE Annual Technical Conference and Exhibition. OnePetro (1994). https://doi.org/10.2118/28552-MS

  25. K. Lund, H.S. Fogler, C.C. McCune, Chem. Eng. Sci. 28(3), 691 (1973). https://doi.org/10.1016/0009-2509(77)80003-1

    Article  CAS  Google Scholar 

  26. Y. Li, R.B. Sullivan, J. de Rozieres, G.L. Gaz, J.J. Hinkel, in SPE Annual Technical Conference and Exhibition. OnePetro (1993). https://doi.org/10.2118/26581-MS

  27. M. Ziauddin, in Acid Stimulation, 1st edn. ed. by S.A. Ali, L.J. Kalfayan, C.T. Montgomery, Henry L. Doherty Series (Society of Petroleum Engineers, Richardson, TX, 2016) p. 26, 42

  28. C.N. Fredd, The Influence of Transport and Reaction on Wormhole Formation in Carbonate Porous Media: A Study of Alternative Stimulation Fluids. PhD. Thesis, University of Michigan (1998)

  29. M. Alkattan, E.H. Oelkers, J.L. Dandurand, J. Schott, Chem. Geol. 151(1), 199 (1998). https://doi.org/10.1016/S0009-2541(98)00080-1

    Article  CAS  Google Scholar 

  30. P. Barton, T. Vatanatham, Environ. Sci. Technol. 10(3), 262 (1976). https://doi.org/10.1021/es60114a010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Tim Luce, Mr. Nam Mai, Ms. Nicole Shimek, and Mr. Brent Cooper for their assistance in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, M., Chang, F. & Cairns, A.J. Low-viscosity single phase acid system for acid fracturing in deep carbonate reservoirs. MRS Communications 11, 796–803 (2021). https://doi.org/10.1557/s43579-021-00135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00135-8

Navigation