Skip to main content

Advertisement

Log in

Design of aromatic polyamides to modify cement performance under triaxial cyclic tests

  • Chemistry and Materials for Hydrocarbon Recovery Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

With cement being inherently brittle, immense efforts towards cement integrity require the addition of polymers into cement to improve cement elasticity and to reduce mechanical fatigue and failure, without compromising cement compressive strength. In this study, highly crosslinked polymers are carefully designed to enhance cement integrity. Both flexible and rigid polyamides show enhanced cement mechanical properties (Young’s modulus, Poisson’s ratio, and mechanical fatigue) under extreme cyclic loading and unloading at 40 MPa. Results from triaxial stress–strain cyclic tests confirm that adding polyaramid to cement significantly reduces mechanical cement fatigue by 93.3%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. A. Shadravan, M. Amani, HPHT 101-what petroleum engineers and geoscientists should know about high pressure high temperature wells environment. Environ. Sci. Technol. 4, 36 (2012)

    CAS  Google Scholar 

  2. D. Guner, H. Ozturk, M. Erkayaoglu, Investigation of the elastic material properties of Class G cement. Struct. Concr. 18, 84 (2017)

    Article  Google Scholar 

  3. A. Fatemi, L. Yang, Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue 20, 9 (1998)

    Article  CAS  Google Scholar 

  4. K.G.N.C. Alwis, C.J. Burgoyne, Accelerated creep testing for aramid fibres using the stepped isothermal method. J. Mater. Sci. 43, 4789 (2008)

    Article  CAS  Google Scholar 

  5. V.R. Riley, I. Razl, Polymer additives for cement composites: a review. Composites 5, 27 (1974)

    Article  CAS  Google Scholar 

  6. J.P. Gorninski, D.C. Dal Molin, C.S. Kazmierczak, Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete. Cem. Concr. Res. 34, 2091 (2004)

    Article  CAS  Google Scholar 

  7. M.-V. Kohnle, U. Ziener, K. Landfester, Synthesis of styrene–butadiene rubber latex via miniemulsion copolymerization. Colloid Polym. Sci. 287, 259 (2009)

    Article  CAS  Google Scholar 

  8. D.L.S. Agostini, C.J.L. Constantino, A.E. Job, Thermal degradation of both latex and latex cast films forming membranes. J. Therm. Anal. Calorim. 91, 703 (2008)

    Article  CAS  Google Scholar 

  9. S. Musso, A. Robisson, S. Maheshwar, F.-J. Ulm, Stimuli-responsive cement-reinforced rubber. ACS Appl. Mater. Interfaces 6, 6962 (2014)

    Article  CAS  Google Scholar 

  10. M. Muthukumar, D. Mohan, Studies on furan polymer concrete. J. Polym. Res. 12, 231 (2005)

    Article  CAS  Google Scholar 

  11. P. Konczalski, K. Piekarski, Tensile properties of portland cement reinforced with Kevlar fibers. J. Reinf. Plast. Compos. 1, 378 (1982)

    Article  Google Scholar 

  12. N.B. Eden, J.E. Bailey, The mechanical properties and tensile failure mechanism of a high strength polymer modified Portland cement. J. Mater. Sci. 19, 2677 (1984)

    Article  CAS  Google Scholar 

  13. P.L. Walton, A.J. Majumdar, Properties of cement composites reinforced with Kevlar fibres. J. Mater. Sci. 13, 1075 (1978)

    Article  CAS  Google Scholar 

  14. D.J. Sweeney, J.A. Newell, S. Picerno, T. Kurzeja, Influence of thermal treatment conditions on the recoil compressive strength of Kevlar-29 Fibers. High Perform. Polym. 14, 133 (2002)

    Article  CAS  Google Scholar 

  15. Y. Song, J.-B. Fan, S. Wang, Recent progress in interfacial polymerization. Mater. Chem. Front. 1, 1028 (2017)

    Article  CAS  Google Scholar 

  16. E. Quevedo, J. Steinbacher, D.T. McQuade, Interfacial polymerization within a simplified microfluidic device: capturing capsules. J. Am. Chem. Soc. 127, 10498 (2005)

    Article  CAS  Google Scholar 

  17. Q. Pan, H. Zhou, Q. Lu, H. Gao, L. Lu, History-independent cyclic response of nanotwinned metals. Nature 551, 214 (2017)

    Article  CAS  Google Scholar 

  18. J. Suhr, P. Victor, L. Ci, S. Sreekala, X. Zhang, O. Nalamasu, P.M. Ajayan, Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2, 417 (2007)

    Article  CAS  Google Scholar 

  19. M.Z. Elsabee, M.A. Nassar, E.-B. Salah, Preparation and characterization of some aromatic/aliphatic polyamides. Am. J. Polym. Sci 2, 7 (2012)

    Article  Google Scholar 

  20. C. Norakankorn, S. Chuayjuljit, V. Pimpan, Synthesis of poly(p-diphenylmethylterephthalamide) from recycled monomers. J. Appl. Polym. Sci. 90, 3723 (2003)

    Article  CAS  Google Scholar 

  21. A.P. Esser-Kahn, S.A. Odom, N.R. Sottos, S.R. White, J.S. Moore, Triggered release from polymer capsules. Macromolecules 44, 5539 (2011)

    Article  CAS  Google Scholar 

  22. V. Karbhari, J. Chin, D. Hunston, B. Benmokrane, T. Juska, R. Morgan, J. Lesko, U. Sorathia, D. Reynaud, Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure. J. Composites Constr. 7, 238 (2003)

    Article  CAS  Google Scholar 

  23. J.-K. Kim, Y.-Y. Kim, Experimental study of the fatigue behavior of high strength concrete. Cem. Concr. Res. 26, 1513 (1996)

    Article  CAS  Google Scholar 

  24. H. Asaei, M. Moosavi, Experimental measurement of compressibility coefficients of synthetic sandstone in hydrostatic conditions. J. Geophys. Eng. 10, 055002 (2013)

    Article  Google Scholar 

  25. A. Hamidi, M. Hooresfand, Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotext. Geomembr. 36, 1 (2013)

    Article  Google Scholar 

  26. Z. Zhang, Z. Hu and S. Schmauder: Fatigue Behavior of 9–12% Cr Ferritic-Martensitic Steel, in Handbook of Mechanics of Materials, edited by S. Schmauder, C.-S. Chen, K. K. Chawla, N. Chawla, W. Chen and Y. Kagawa (Springer Singapore, Singapore, 2019), pp. 1629.

  27. H. Bessaies-Bey, R. Baumann, M. Schmitz, M. Radler, N. Roussel, Organic admixtures and cement particles: competitive adsorption and its macroscopic rheological consequences. Cem. Concr. Res. 80, 1 (2016)

    Article  CAS  Google Scholar 

  28. J. Pickelmann, J. Plank, A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and β-naphthalene sulfonate (BNS) in shotcrete. Cem. Concr. Res. 42, 1409 (2012)

    Article  CAS  Google Scholar 

  29. J. Plank, M. Gretz, Study on the interaction between anionic and cationic latex particles and Portland cement. Colloids Surf. A 330, 227 (2008)

    Article  CAS  Google Scholar 

  30. E. Güneyisi, M. Gesoğlu, T. Özturan, Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 34, 2309 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Diana Rasner, Roland F. Martinez, Kenneth D. Johnson, and Timothy P. O’Connell for sample preparation and expertise in operating the triaxial loading cell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Q. Contreras.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 933 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, E.Q., Althaus, S.M. Design of aromatic polyamides to modify cement performance under triaxial cyclic tests. MRS Communications 11, 777–782 (2021). https://doi.org/10.1557/s43579-021-00129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00129-6

Keywords

Navigation