Skip to main content
Log in

Preparation and magnetic properties of cylindrical permalloy nanowire arrays

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Cylindrical permalloy nanowire arrays are prepared by employing anodic aluminum oxide (AAO) template-assisted electrochemical deposition method. To prepare high-quality permalloy nanowire, the effects of different deposition parameters (pulse current density, concentration and pH value of the electrolyte, and deposition temperature) on the chemical composition, uniformity, and magnetic properties of the nanowires are systematically investigated. A high-quality permalloy nanowire with good magnetic properties of \({M}_{\text{S}}\approx 5.7\times {10}^{5}\, \mathrm{A}/\mathrm{m}\) and \(\alpha \approx 0.04\) has been successfully prepared by optimizing the preparation scheme, which can provide technical support for mass production of cylindrical permalloy nanowire for spintronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data availability

Data will be made available on reasonable request.

References

  1. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Magnetic domain-wall logic. Science 309, 1688–1692 (2005). https://doi.org/10.1126/science.1108813

    Article  CAS  Google Scholar 

  2. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008). https://doi.org/10.1126/science.1145799

    Article  CAS  Google Scholar 

  3. Y.K. Kim, T.J. Silva, Magnetostriction characteristics of ultrathin permalloy films. Appl. Phys. Lett. 68, 2885–2886 (1996). https://doi.org/10.1063/1.116320

    Article  CAS  Google Scholar 

  4. O. Vazquez-Mena, L. Gross, S. Xie, L.G. Villanueva, J. Brugger, Resistless nanofabrication by stencil lithography: a review. Microelectron. Eng. 132, 236–254 (2015). https://doi.org/10.1016/j.mee.2014.08.003

    Article  CAS  Google Scholar 

  5. N.L. Schryer, L.R. Walker, The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974). https://doi.org/10.1063/1.1663252

    Article  CAS  Google Scholar 

  6. H.-G. Piao, J.-H. Shim, S.-H. Lee, D. Djuhana, S.K. Oh, S.-C. Yu, D.-H. Kim, Domain wall propagation in wavy ferromagnetic nanowire. IEEE Trans. Magn. 45, 3926–3929 (2009). https://doi.org/10.1109/TMAG.2009.2021668

    Article  Google Scholar 

  7. M. Yan, A.K. Kay, S. Gliga, R. Hertel, Beating the walker limit with massless domain walls in cylindrical nanowires. Phys. Rev. Lett. 104, 057201 (2010). https://doi.org/10.1103/PhysRevLett.104.057201

    Article  CAS  Google Scholar 

  8. C. Chen, H.-G. Piao, J.-H. Shim, L. Pan, D.-H. Kim, RC-circuit-like dynamic characteristic of the magnetic domain wall in flat ferromagnetic nanowires. Chin. Phys. Lett. 32, 87502 (2015). https://doi.org/10.1088/0256-307X/32/8/087502

    Article  Google Scholar 

  9. X.-P. Ma, J. Zheng, H.-G. Piao, D.-H. Kim, P. Fischer, Cherenkov-type three-dimensional breakdown behavior of the Bloch-point domain wall motion in the cylindrical nanowire. Appl. Phys. Lett. 117, 062402 (2020). https://doi.org/10.1063/5.0013002

    Article  Google Scholar 

  10. H.-G. Piao, J.-H. Shim, D. Djuhana, D.-H. Kim, Intrinsic pinning behavior and propagation onset of three-dimensional Bloch-point domain wall in a cylindrical ferromagnetic nanowire. Appl. Phys. Lett. 102, 112405 (2013). https://doi.org/10.1063/1.4794823

    Article  CAS  Google Scholar 

  11. A. Zhukov, J.M. Blanco, M. Ipatov, A. Talaat, V. Zhukova, Engineering of domain wall dynamics in amorphous microwires by annealing. J. Alloy. Compd. 707, 35–40 (2017). https://doi.org/10.1016/j.jallcom.2016.09.072

    Article  CAS  Google Scholar 

  12. W. Lee, S.J. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014). https://doi.org/10.1021/cr500002z

    Article  CAS  Google Scholar 

  13. Y. Zhang, J. Zhang, L.X. Yuan, G. Li, X.Z. Zhang, Z.X. Yue, L.T. Li, Synthesis and microwave magnetic properties of magnetite nanowire arrays in polycarbonate templates. Ceram. Int. 43, S403–S406 (2017). https://doi.org/10.1016/j.ceramint.2017.05.304

    Article  CAS  Google Scholar 

  14. A. Brenner, Electrodeposition of Alloys, Vols. 1 and 2. Academic Press, New York (1963). https://doi.org/10.1016/B978-1-4831-9807-1.50001-5

  15. I. Tabakovic, J. Gong, S. Riemer, K. Michael, Influence of surface roughness and current efficiency on composition gradients of thin NiFe films obtained by electrodeposition. J. Electrochem. Soc. (2014). https://doi.org/10.1149/2.0351503jes

    Article  Google Scholar 

  16. Á. Llavona, L. Pérez, M.C. Sánchez, V. de Manuel, Enhancement of anomalous co-deposition in the synthesis of Fe–Ni alloys in nanopores. Electrochim. Acta 106, 392–397 (2013). https://doi.org/10.1016/j.electacta.2013.05.116

    Article  CAS  Google Scholar 

  17. H. Dahms, I.M. Croll, The anomalous co-deposition of iron–nickel alloys. J. Electrochem. Soc. 112, 771–775 (1965). https://doi.org/10.1149/1.2423692

    Article  CAS  Google Scholar 

  18. B.S. Baker, A.C. West, Electrochemical impedance spectroscopy study of nickel iron deposition. II. Theoretical interpretation. J. Electrochem. Soc. 144, 164–169 (1997). https://doi.org/10.1149/1.1837380

    Article  CAS  Google Scholar 

  19. P.C. Andricacos, C. Arana, J. Tabib, J. Dukovic, L.T. Romankiw, Electrodeposition of nickel-iron alloys. I. Effect of agitation. J. Electrochem. Soc. 136, 1336–1340 (1989). https://doi.org/10.1149/1.2096917

    Article  CAS  Google Scholar 

  20. K. Neuróhr, A. Csik, K. Vad, G. Molnár, I. Bakonyi, L. Péter, Near-substrate composition depth profile of direct current-plated and pulse-plated Fe–Ni alloys. Electrochim. Acta 103, 179–187 (2013). https://doi.org/10.1016/j.electacta.2013.04.063

    Article  CAS  Google Scholar 

  21. O. Dragos, H. Chiriac, N. Lupu, M. Grigoras, I. Tabakovic, Anomalous co-deposition of fcc NiFe nanowires with 5–55% Fe and their morphology, crystal structure and magnetic properties. J. Electrochem. Soc. 163, D83–D94 (2016). https://doi.org/10.1149/2.0771603jes

    Article  CAS  Google Scholar 

  22. A. Salman, R. Sharif, K. Javed, S. Shahzadi, K.T. Kubra, A. Butt, S. Saeed, H. Arshad, S. Parajuli, J. Feng, Controlled electrochemical synthesis and magnetic characterization of permalloy nanotubes. J. Alloys Compd. 836, 155434 (2020). https://doi.org/10.1016/j.jallcom.2020.155434

    Article  CAS  Google Scholar 

  23. R. Dost, Y. Zhou, H. Zhang, D.A. Allwood, B.J. Inkson, Effect of annealing on the electrical and magnetic properties of electrodeposited Ni and permalloy nanowires. J. Magn. Magn. Mater. 499, 166276 (2020). https://doi.org/10.1016/j.jmmm.2019.166276

    Article  CAS  Google Scholar 

  24. K. Yin, C. Lee, Effect of ferrous ion concentration on the electrodeposition of iron-nickel alloys. J. Chem. Technol. Biotechnol. 70, 337–342 (1997). https://doi.org/10.1002/(SICI)1097-4660(199712)70:4%3C337::AID-JCTB790%3E3.0.CO;2-C

    Article  CAS  Google Scholar 

  25. H.Y. Sun, X.H. Li, Y. Chen, W. Li, F. Li, B.T. Liu, X.Y. Zhang, The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS. Nanotechnology 19, 225601 (2008). https://doi.org/10.1088/0957-4484/19/22/225601

    Article  CAS  Google Scholar 

  26. M. Mallik, A. Mitra, S. Sengupta, K. Das, R.N. Ghosh, S. Das, Effect of current density on the nucleation and growth of crystal facets during pulse electrodeposition of Sn–Cu lead-free solder. Cryst. Growth Des. 14, 6542–6549 (2014). https://doi.org/10.1021/cg501440a

    Article  CAS  Google Scholar 

  27. A.M. Rashidi, A galvanostatic modeling for preparation of electrodeposited nanocrystalline coatings by control of current density. J. Mater. Sci. Technol. 28, 1071–1076 (2012). https://doi.org/10.1016/S1005-0302(12)60175-3

    Article  CAS  Google Scholar 

  28. B.N. Popov, S.N. Popova, K. Yin, R.E. White, Electrodeposition of Iron-Nickel Alloys in the Presence of Organic Additives (American Electroplaters and Surface Finishers Society, Orlando, 1994), pp. 65–70

    Google Scholar 

  29. Q. Shu, Y.J. Xiao, Y. Hong, J. Wang, Electrodeposition preparation of Ni–Fe alloy foil. Nanomater. Energy 5, 86–95 (2016). https://doi.org/10.1680/jnaen.16.00009

    Article  Google Scholar 

  30. X. Yang, H. Yuan, Preparation and characterization of iron-riched nanocrystalline Fe–Ni alloy foil. Am. Sci. Publ. 5, 521–524 (2012). https://doi.org/10.1166/asl.2012.1985

    Article  CAS  Google Scholar 

  31. R. Hertel, Micromagnetic simulations of magnetostatically coupled nickel nanowires. J. Appl. Phys. 90, 5752–5758 (2001). https://doi.org/10.1063/1.1412275

    Article  CAS  Google Scholar 

  32. A.K. Singh, K. Mandal, Effect of aspect ratio and temperature on magnetic properties of permalloy nanowires. J. Nanosci. Nanotechnol. 14, 5036–5041 (2014). https://doi.org/10.1166/jnn.2014.8878

    Article  CAS  Google Scholar 

  33. T. Guo, P. Huang, K.W. Xu, F. Wang, T.J. Lu, Solid solution effects on hardness and strain rate sensitivity of nanocrystalline NiFe alloy. Mater. Sci. Eng. A 676, 501–505 (2016). https://doi.org/10.1016/j.msea.2016.08.120

    Article  CAS  Google Scholar 

  34. X. Zhang, X. Jiang, F. Xiong, C. Wang, S. Yang, Controlled synthesis and magnetic properties of Ni nanotubes and nanowires. Mater. Res. Bull. 95, 248–252 (2017). https://doi.org/10.1016/j.materresbull.2017.07.044

    Article  CAS  Google Scholar 

  35. A.M. Rashidi, A. Amadeh, The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings. Surf. Coat. Technol. 202, 3772–3776 (2008). https://doi.org/10.1016/j.surfcoat.2008.01.018

    Article  CAS  Google Scholar 

  36. L. Kraus, G. Infante, Z. Frait, M. Vázquez, Ferromagnetic resonance in microwires and nanowires. Phys. Rev. B 83, 174438 (2011). https://doi.org/10.1103/PhysRevB.83.174438

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Science and Technology of China and the National Natural Science Foundation of China for funding the project. This work also technically supported by the Beijing National Center for Electron Microscopy and Yichang Key Laboratory of Magnetic Functional Materials.

Funding

This work was supported by National Key R&D Program of China (Grant Nos. 2017YFB0903700 and 2017YFB0903702) and the National Natural Science Foundation of China (Grant No. 11474183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Guang Piao.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest. Y.Z. and L.L. for their equally important contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, L., Zhou, X. et al. Preparation and magnetic properties of cylindrical permalloy nanowire arrays. MRS Communications 11, 902–909 (2021). https://doi.org/10.1557/s43579-021-00125-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00125-w

Keywords

Navigation