Skip to main content
Log in

Elastolytic-sensitive 3D-printed chitosan scaffold for wound healing applications

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The combination of a chitosan 3D-printed scaffold with a hydrogel matrix containing an elastin-like polypeptide functionalized with the epidermal growth factor (HEGF) was evaluated as a possible strategy to obtain a bioactive platform with stimuli-responsive properties. We designed a chitosan/HEGF hybrid scaffold and examined the physico-chemical properties and the in vitro behavior when in contact with simulated biological fluids. Primary human dermal fibroblasts (hDFs) were used to test the in vitro cytocompatibility. Overall, these data provide first insights into the integration of HEGF-based hydrogel with 3D-printed scaffolds, contributing towards the rational design of a new smart functional wound dressing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Ciofani, G.G. Genchi, V. Mattoli, B. Mazzolai, A. Bandiera, The potential of recombinant human elastin-like polypeptides for drug delivery. Expert Opin. Drug Deliv. 11, 1507 (2014)

    Article  CAS  Google Scholar 

  2. J.C. Rodriguez-Cabello, I. Gonzalez de Torre, A. Ibanez-Fonseca, M. Alonso, Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug Deliv. Rev. 129, 118 (2018)

    Article  CAS  Google Scholar 

  3. D.H.T. Le, A. Sugawara-Narutaki, Elastin-like polypeptides as building motifs toward designing functional nanobiomaterials. Mol. Syst. Des. Eng. 4, 545 (2019)

    Article  CAS  Google Scholar 

  4. A. Bandiera, Transglutaminase-catalyzed preparation of human elastin-like polypeptide-based three-dimensional matrices for cell encapsulation. Enzyme Microb. Technol. 49, 347 (2011)

    Article  CAS  Google Scholar 

  5. A. Bandiera, Elastin-like polypeptides: the power of design for smart cell encapsulation. Expert Opin. Drug Deliv. 14, 37 (2017)

    Article  CAS  Google Scholar 

  6. P. D’Andrea, D. Civita, M. Cok, L.U. Severino, F. Vita, D. Scaini, L. Casalis, P. Lorenzon, I. Donati, A. Bandiera, Myoblast adhesion, proliferation and differentiation on human elastin-like polypeptide (HELP) hydrogels. J. Appl. Biomater. Funct. 15, 43–53 (2017)

    Google Scholar 

  7. A. Bandiera, A. Markulin, L. Corich, F. Vita, V. Borelli, Stimuli-induced release of compounds from elastin biomimetic matrix. Biomacromolecules 15, 416 (2014)

    Article  CAS  Google Scholar 

  8. G. Ciofani, G.G. Genchi, P. Guardia, B. Mazzolai, V. Mattoli, A. Bandiera, Recombinant human elastin-like magnetic microparticles for drug delivery and targeting. Macromol. Biosci. 14, 632 (2014)

    Article  CAS  Google Scholar 

  9. S.M. Staubli, G. Cerino, I. Gonzalez De Torre, M. Alonso, D. Oertli, F. Eckstein, K. Glatz, J.C. Rodriguez Cabello, A. Marsano, Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials 135, 30 (2017)

    Article  CAS  Google Scholar 

  10. J. Boateng, O. Catanzano, Advanced therapeutic dressings for effective wound healing—a review. J. Pharm. Sci. 104, 3653 (2015)

    Article  CAS  Google Scholar 

  11. A. Goyanes, U. Det-Amornrat, J. Wang, A.W. Basit, S. Gaisford, 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J. Control. Release 234, 41 (2016)

    Article  CAS  Google Scholar 

  12. C. Intini, L. Elviri, J. Cabral, S. Mros, C. Bergonzi, A. Bianchera, L. Flammini, P. Govoni, E. Barocelli, R. Bettini, M. McConnell, 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr. Polym. 199, 593 (2018)

    Article  CAS  Google Scholar 

  13. R. Singh, K. Shitiz, A. Singh, Chitin and chitosan: biopolymers for wound management. Int. Wound J. 14, 1276 (2017)

    Article  Google Scholar 

  14. I. Bano, M. Arshad, T. Yasin, M.A. Ghauri, M. Younus, Chitosan: a potential biopolymer for wound management. Int. J. Biol. Macromol. 102, 380 (2017)

    Article  CAS  Google Scholar 

  15. S.S. Murugan, S. Anil, P. Sivakumar, M.S. Shim, J. Venkatesan, 3D-printed chitosan composites for biomedical applications, in Chitosan for biomaterials IV: biomedical applications. ed. by R. Jayakumar, M. Prabaharan (Springer International Publishing, Cham, 2021), p. 87

    Chapter  Google Scholar 

  16. J.R.H. Sta. Agueda, Q. Chen, R.D. Maalihan, J. Ren, Í.G.M. da Silva, N.P. Dugos, E.B. Caldona, R.C. Advincula, 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. 11, 197 (2021)

    Article  Google Scholar 

  17. P. D’Andrea, M. Sciancalepore, K. Veltruska, P. Lorenzon, A. Bandiera, Epidermal Growth Factor-based adhesion substrates elicit myoblast scattering, proliferation, differentiation and promote satellite cell myogenic activation. Biochim. Biophys. Acta Mol. Cell. Res. 1866, 504 (2019)

    Article  CAS  Google Scholar 

  18. S. Barrientos, H. Brem, O. Stojadinovic, M. Tomic-Canic, Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 22, 569 (2014)

    Article  Google Scholar 

  19. R.J. Bodnar, Epidermal growth factor and epidermal growth factor receptor: the Yin and Yang in the treatment of cutaneous wounds and cancer. Adv. Wound Care (New Rochelle) 2, 24 (2013)

    Article  Google Scholar 

  20. O. Catanzano, F. Quaglia, J.S. Boateng, Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opin. Drug Deliv. 1, 737–759 (2021)

    Article  Google Scholar 

  21. L. Elviri, R. Foresti, C. Bergonzi, F. Zimetti, C. Marchi, A. Bianchera, F. Bernini, M. Silvestri, R. Bettini, Highly defined 3D printed chitosan scaffolds featuring improved cell growth. Biomed. Mater. 12, 045009 (2017)

    Article  Google Scholar 

  22. O. Catanzano, V. D’Esposito, P. Formisano, J.S. Boateng, F. Quaglia, Composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds. J. Pharm. Sci. 107, 654 (2018)

    Article  CAS  Google Scholar 

  23. J. Visser, F.P. Melchels, J.E. Jeon, E.M. van Bussel, L.S. Kimpton, H.M. Byrne, W.J. Dhert, P.D. Dalton, D.W. Hutmacher, J. Malda, Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun. 6, 6933 (2015)

    Article  CAS  Google Scholar 

  24. L. Dong, S.J. Wang, X.R. Zhao, Y.F. Zhu, J.K. Yu, 3D-printed poly(epsilon-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 7, 13412 (2017)

    Article  Google Scholar 

  25. K.E. Michael, V.N. Vernekar, B.G. Keselowsky, J.C. Meredith, R.A. Latour, A.J. García, Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19, 8033 (2003)

    Article  CAS  Google Scholar 

  26. L. Corich, M. Busetti, V. Petix, S. Passamonti, A. Bandiera, Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection. J. Biotechnol. 255, 57 (2017)

    Article  CAS  Google Scholar 

  27. D.R. Yager, L.Y. Zhang, H.X. Liang, R.F. Diegelmann, I.K. Cohen, Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J. Invest. Dermatol. 107, 743 (1996)

    Article  CAS  Google Scholar 

  28. F. Grinnell, M. Zhu, Identification of neutrophil elastase as the proteinase in burn wound fluid responsible for degradation of fibronectin. J. Invest. Dermatol. 103, 155 (1994)

    Article  CAS  Google Scholar 

  29. N.J. Trengove, M.C. Stacey, S. MacAuley, N. Bennett, J. Gibson, F. Burslem, G. Murphy, G. Schultz, Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 7, 442 (1999)

    Article  CAS  Google Scholar 

  30. C.J. Park, S.G. Clark, C.A. Lichtensteiger, R.D. Jamison, A.J. Johnson, Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater. 5, 1926 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by “Commissariato del Governo della Regione Friuli Venezia Giulia - Fondo Trieste” and managed by AREA Science park in the frame of “Made in Trieste” program. The authors wish to thank Dr. M. Stebel for technical assistance in HELP and HEGF polypeptide production and Prof. S. Passamonti for scientific assistance during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidio Catanzano.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 11342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catanzano, O., Elviri, L., Bergonzi, C. et al. Elastolytic-sensitive 3D-printed chitosan scaffold for wound healing applications. MRS Communications 11, 924–930 (2021). https://doi.org/10.1557/s43579-021-00124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00124-x

Keywords

Navigation