Skip to main content
Log in

Nucleation of voids at second phase particles at lithium–ceramic interface degrades cell performance

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We show that foreign second phase particles incorporated into the lithium metal-ceramic-electrolyte interface catalyze nucleation of voids, which, at first, lead to higher voltage and then to voltage collapse in constant current experiments. Voltage increases because voids grow the area-specific resistance. The collapse is caused by dendrites. Cell manufacture in high class clean room environments is recommended for the sake of reliability and increased performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. F.N. Rhines, P.J. Wray, Investigation of the intermediate temperature ductility in metals. ASM Trans Q. 54(2), 117–128 (1961)

    Google Scholar 

  2. P. Wang, W. Qu, W.-L. Song, H. Chen, R. Chen, D. Fang, Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 29(27), 1900950 (2019). https://doi.org/10.1002/adfm.201900950

    Article  CAS  Google Scholar 

  3. A. Badran, T. Clemenceau, N. Andriamady, D. Marshall, R. Raj, Current constriction of Li-ion transport across lithium metal–ceramic electrolyte interface: imaged with X-ray tomography. MRS Commun. (2021). https://doi.org/10.1557/s43579-021-00027-x

    Article  Google Scholar 

  4. M.J. Wang, R. Choudhury, J. Sakamoto, Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3(9), 2165–2178 (2019). https://doi.org/10.1016/j.joule.2019.06.017

    Article  CAS  Google Scholar 

  5. R. Raj, Stack pressure and critical current density in Li-metal cells: the role of mechanical deformation. Acta Mater. 215, 117076 (2021). https://doi.org/10.1016/j.actamat.2021.117076

    Article  CAS  Google Scholar 

  6. R. Raj, Nucleation of voids at Li-metal ceramic-electrolyte interfaces. MRS Commun. 11, 644 (2021)

    Article  Google Scholar 

  7. D.W. MacLachlan, D.M. Knowles, Creep-behavior modeling of the single-crystal superalloy CMSX-4. Metall Mater Trans A. 31(5), 1401–1411 (2000). https://doi.org/10.1007/s11661-000-0258-0

    Article  Google Scholar 

  8. R. Schlenker, D. Stępień, P. Koch et al., Understanding the lifetime of battery cells based on solid-state Li6PS5Cl electrolyte paired with lithium metal electrode. ACS Appl Mater Interfaces 12(17), 20012–20025 (2020). https://doi.org/10.1021/acsami.9b22629

    Article  CAS  Google Scholar 

  9. A. Pannikkat, R. Raj, Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Mater. 47(12), 3423–3431 (1999)

    Article  CAS  Google Scholar 

  10. C. Herring, Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21(5), 437–445 (1950). https://doi.org/10.1063/1.1699681

    Article  Google Scholar 

  11. R. Raj, Nucleation of cavities at second phase particles in grain boundaries. Acta Metall. 26(6), 995–1006 (1978). https://doi.org/10.1016/0001-6160(78)90050-0

    Article  CAS  Google Scholar 

  12. R. Raj, M.F. Ashby, Intergranular fracture at elevated temperature. Acta Metall. 23(6), 653–666 (1975). https://doi.org/10.1016/0001-6160(75)90047-4

    Article  Google Scholar 

  13. T. Clemenceau, N. Andriamady, M.K.P. Kumar et al., Flash sintering of Li-ion conducting ceramic in a few seconds at 850 °C. Scr. Mater. 172, 1–5 (2019). https://doi.org/10.1016/j.scriptamat.2019.06.038

    Article  CAS  Google Scholar 

  14. L. Cheng, E.J. Crumlin, W. Chen et al., The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys. Chem. Chem. Phys. 16(34), 18294–18300 (2014). https://doi.org/10.1039/C4CP02921F

    Article  CAS  Google Scholar 

  15. A. Sharafi, S. Yu, M. Naguib et al., Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5(26), 13475–13487 (2017). https://doi.org/10.1039/C7TA03162A

    Article  CAS  Google Scholar 

  16. A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.053

    Article  CAS  Google Scholar 

  17. T. Clemenceau, N. Andriamady, R. Raj, Influence of temperature and ASR on the critical current density in lithium-metal ceramic cells. MRS Commun. 11, 483–488 (2021)

    Article  Google Scholar 

  18. D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle interpretation. Adv. Colloid Interface. Sci. 81(3), 167–249 (1999). https://doi.org/10.1016/S0001-8686(98)00087-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Lucideon Limited, of Stoke of Trent in the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Raj.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriamady, N.E., Raj, R. Nucleation of voids at second phase particles at lithium–ceramic interface degrades cell performance. MRS Communications 11, 879–883 (2021). https://doi.org/10.1557/s43579-021-00123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00123-y

Keywords

Navigation