Skip to main content

Advertisement

Log in

Digital light processing-based 3D printing of polytetrafluoroethylene solid microneedle arrays

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study evaluated the structural and skin penetration properties of solid microneedle arrays made by digital light processing-based 3D printing of polytetrafluoroethylene. Confocal laser scanning microscopy and scanning electron microscopy revealed that the microneedles exhibited uniform heights. Raman spectroscopy, X-ray photoelectron spectroscopy, nanoindentation, and contact angle results indicated that the composition, carbon–fluorine bonding, reduced elastic modulus, and contact angle values of the 3D-printed polytetrafluoroethylene corresponded with those of bulk polytetrafluoroethylene, respectively. Methyl blue was used to evaluate the human skin penetration functionality of the microneedle array. Our results indicate that digital light processing is appropriate for manufacturing polytetrafluoroethylene medical devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. ASM International, Materials and Coatings for Medical Devices Cardiovascular: MPMD Materials and Processes for Medical Devices (ASM International, 2009).

  2. D.A. Kenney, R. Tu, R.C. Peterson, ASAIO Trans. 34, 661–663 (1988)

    CAS  Google Scholar 

  3. H.D. Barber, J. Lignelli, B.M. Smith, B.K. Bartee, J. Oral Maxillofac. Surg. 65, 748–752 (2007)

    Article  Google Scholar 

  4. J.M. Carbonell, I.S. Martín, A. Santos, A. Pujol, J.D. Sanz-Moliner, J. Nart, Int. J. Oral Maxillofac. Surg. 43, 75–84 (2014)

    Article  CAS  Google Scholar 

  5. J. Lee, Y. Kim, P. Yun, J. Oh, S. Kim, J. Korean Assoc. Oral Maxillofac. Surg. 36, 275–279 (2010)

    Article  Google Scholar 

  6. R.C. Eberhart, M.E. Lynch, F.H. Bilge, H.A. Arts, Trans.-Am. Soc. Artif. Intern. Organs 26, 185–193 (1980)

    CAS  Google Scholar 

  7. T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, F. Leisch, Biomaterials 24, 5139–5144 (2003)

    Article  CAS  Google Scholar 

  8. A. Dekker, K. Reitsma, T. Beugeling, A. Bantjes, J. Feijen, W.G. Van Aken, Biomaterials 12, 130–138 (1991)

    Article  CAS  Google Scholar 

  9. N. Jensen, B. Lindblad, D. Bergqvist, Eur. Surg. Res. 28, 49–54 (1996)

    Article  CAS  Google Scholar 

  10. P.B. Van Wachem, C.M. Vreriks, T. Beugeling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. Van Aken, J. Biomed. Mater. Res. 21, 701–718 (1987)

    Article  Google Scholar 

  11. X.Q. Wang, D.R. Chen, J.C. Han, S.Y. Du, J. Appl. Polym. Sci. 83, 990–996 (2002)

    Article  CAS  Google Scholar 

  12. Q. Yin, Y. Shen, Q. Miao, R. Zhang, F. Wu, Prog. Mod. Biomed. 2016, 19 (2016)

    Google Scholar 

  13. M.S. Saleh, M. HamidVishkasougheh, H. Zbib, R. Panat, Scr. Mater. 149, 144–149 (2018)

    Article  Google Scholar 

  14. R.D. Maalihan, B.B. Pajarito, R.C. Advincula, Mater. Today: Proc. 33, 1819–1824 (2020)

    CAS  Google Scholar 

  15. S.N. Economidou, C.P.P. Pere, A. Reid, M.J. Uddin, J.F. Windmill, D.A. Lamprou, D. Douroumis, Mater. Sci. Eng. C 102, 743–755 (2019)

    Article  CAS  Google Scholar 

  16. S.D. Gittard, P.R. Miller, C. Jin, T.N. Martin, R.D. Boehm, B.J. Chisholm, S.J. Stafslien, J.W. Daniels, N. Cilz, N.A. Monteiro-Riviere, JOM 63, 59–68 (2011)

    Article  Google Scholar 

  17. Y. Zhang, M. Yin, O. Xia, A.P. Zhang and H. Tam, 2018 IEEE Micro Electro Mechanical Systems (MEMS), 37–40 (2018).

  18. Y. Zhang, M. Yin, X. Ouyang, A.P. Zhang, H. Tam, Appl. Mater. Today 19, 100580 (2020)

    Article  Google Scholar 

  19. C. Scott, 3M develops new patent-pending technology for the 3D printing of fluoropolymers. https://3dprint.com/149969/3m-3d-printing-fluoropolymers/. Accessed 21 Sept 2016.

  20. S.A. Skoog, P.L. Goering, R.J. Narayan, J. Mater. Sci. Mater. Med. 25, 845–856 (2014)

    Article  CAS  Google Scholar 

  21. R. Sachan, P. Jaipan, J.Y. Zhang, S. Degan, D. Erdmann, J. Tedesco, L. Vanderwal, S.J. Stafslien, I. Negut, A. Visan, Int. J. Bioprint. 3, 147–157 (2017)

    Article  CAS  Google Scholar 

  22. J. Zhang, Y. Wang, J.Y. Jin, S. Degan, R.P. Hall, R.D. Boehm, P. Jaipan, R.J. Narayan, JOM 68, 1128–1133 (2016)

    Article  CAS  Google Scholar 

  23. H. Nagao, A. Matsuda, K.G. Nakamura, K. Kondo, Appl. Phys. Lett. 83, 249–250 (2003)

    Article  CAS  Google Scholar 

  24. J. Escobar, L. Arurault, V. Turq, Appl. Surf. Sci. 258, 8199–8208 (2012)

    Article  CAS  Google Scholar 

  25. M. Jing, L. Jiang, S. Wang, F. Jing, G. Sun, Int. J. Hydrog. Energy 38, 7957–7963 (2013)

    Article  CAS  Google Scholar 

  26. A. Eshaghi, M. Mesbahi, A.A. Aghaei, Optik 241, 166967 (2021)

    Article  CAS  Google Scholar 

  27. D.L. Pugmire, C.J. Wetteland, W.S. Duncan, R.E. Lakis, D.S. Schwartz, Polym. Degrad. Stab. 94(9), 1533–1541 (2009)

    Article  CAS  Google Scholar 

  28. D.L. Pugmire, C.J. Wetteland, W.S. Duncan, R.E. Lakis, D.S. Schwartz, Polym. Degrad. Stab. 94, 1533–1541 (2009)

    Article  CAS  Google Scholar 

  29. L.N. Ignateva, V.M. Buznik, Russ. J. Gen. Chem. 79, 677–685 (2009)

    Article  CAS  Google Scholar 

  30. J. Piwowarczyk, R. Jędrzejewski, D. Moszyński, K. Kwiatkowski, A. Niemczyk, J. Baranowska, Polymers 11, 1629 (2019)

    Article  CAS  Google Scholar 

  31. M. Schulze, K. Bolwin, E. Gülzow, W. Schnurnberger, Fresenius J. Anal. Chem. 353, 778–784 (1995)

    Article  CAS  Google Scholar 

  32. G. Tang, X. Ma, M. Sun, X. Li, Carbon 43, 345–350 (2005)

    Article  CAS  Google Scholar 

  33. J. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release 104, 51–66 (2005)

    Article  CAS  Google Scholar 

  34. E. Burkarter, C.K. Saul, F. Thomazi, N.C. Cruz, L.S. Roman, W.H. Schreiner, Surf. Coat. Technol. 202, 194–198 (2007)

    Article  CAS  Google Scholar 

  35. K. Ren, W. Dai, J. Zhou, J. Su, H. Wu, Proc. Natl. Acad. Sci. 108, 8162–8166 (2011)

    Article  CAS  Google Scholar 

  36. J. Xu, H. Lee, Chemosensors 8, 66 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the assistance of Bob Fidler and Paul Simutis with DataPhysics Instruments USA Corp. for their assistance with optical contact angle measurements and data interpretation. Funding was provided through the "Cares Act" with programmatic oversight from the Medical Research and Development Command, Military Infectious Diseases Research Program. Support from MTEC is also acknowledged; MTEC is a 501(c)(3) biomedical technology consortium collaborating with multiple government agencies under a 10-year renewable Other Transactional Agreement with the U.S. Army Medical Research and Development Command. MTEC is managed by Advanced Technology International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, R., Nguyen, A.K., Lu, J. et al. Digital light processing-based 3D printing of polytetrafluoroethylene solid microneedle arrays. MRS Communications 11, 896–901 (2021). https://doi.org/10.1557/s43579-021-00121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00121-0

Keywords

Navigation