Skip to main content

Advertisement

Log in

Probing charge transfer in 2D MoS2/tellurene type-II p–n heterojunctions

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

2D heterostructures offer new opportunities for harnessing a wider range of the solar spectrum in high-performance photovoltaic devices. Here, we explore a type-II p–n heterojunction, by exploiting air-stable tellurene (Te) in combination with MoS2, to study its charge transfer for photovoltaic applications. The charge transfer of MoS2/Te heterojunction is confirmed by photoluminescence spectroscopy, Raman spectroscopy and Kelvin probe force microscopy. The exciton binding energy for MoS2/Te heterojunction is estimated to be around 10 meV, which is much lower than that for monolayer MoS2. This strategy can be exploited to develop next-generation intrinsically ultrathin light-harvesting devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  CAS  Google Scholar 

  2. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, K.S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)

    Article  CAS  Google Scholar 

  3. X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014)

    Article  CAS  Google Scholar 

  4. M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee, P. Kim, J. Hone, W.J. Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4, 1624 (2013)

  5. B. Yan, G. Li, B. Shi, J. Liu, H. Nie, K. Yang, B. Zhang, J. He, 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber. Nanophotonics. 9, 2593–2602 (2020)

    Article  CAS  Google Scholar 

  6. Z. Guan, S. Ni, S. Hu, Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction. RSC Adv. 7, 45393–45399 (2017)

    Article  CAS  Google Scholar 

  7. O. Leenaerts, S. Vercauteren, B. Partoens, Band alignment of lateral two-dimensional heterostructures with a transverse dipole. Appl. Phys. Lett. 110, 181602 (2017)

    Article  Google Scholar 

  8. A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y.H. Ng, Z. Zhu, R. Amal, S.C. Smith, Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 134, 4393–4397 (2012)

    Article  CAS  Google Scholar 

  9. X. Mu, M. Sun, Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. 117, 091601 (2020)

    Article  CAS  Google Scholar 

  10. A. Boulesbaa, K. Wang, M. Mahjouri-Samani, M. Tian, A.A. Puretzky, I. Ivanov, C.M. Rouleau, K. Xiao, B.G. Sumpter, D.B. Geohegan, Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J. Am. Chem. Soc. 138, 14713–14719 (2016)

    Article  CAS  Google Scholar 

  11. J. Xi, J. Byeon, U. Kim, K. Bang, G.R. Han, J.-Y. Kim, J. Yoon, H. Dong, Z. Wu, G. Divitini, K. Xi, J. Park, T. Lee, S.K. Kim, M. Choi, J.W. Lee, Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden-Popper perovskite solar cells. Energy Environ. Sci. 14, 4915–4925 (2021)

    Article  CAS  Google Scholar 

  12. F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, E. Kan, Visible-light-absorption in graphitic c3n4 bilayer: enhanced by interlayer coupling. J. Phys. Chem. Lett. 3, 3330–3334 (2012)

    Article  CAS  Google Scholar 

  13. Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter, X. Chen, D. Luo, F. Meng, D. Su, J. Decker, W. Ji, R.S. Ruoff, P. Sutter, Interaction of black phosphorus with oxygen and water. Chem. Mater. 28, 8330–8339 (2016)

    Article  CAS  Google Scholar 

  14. Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W.A. Goddard, M.J. Kim, X. Xu, P.D. Ye, W. Wu, Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018)

    Article  Google Scholar 

  15. T.I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y.S. Kim, J.M. Myoung, Z.L. Wang, High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25, 2920–2925 (2013)

    Article  CAS  Google Scholar 

  16. G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, P.D. Ye, Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett. 19, 1955–1962 (2019)

    Article  CAS  Google Scholar 

  17. M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock, X. Song, H. Kim, V.R. Shrestha, Y. Gao, K.B. Crozier, M. Scott, A. Javey, Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018)

    Article  CAS  Google Scholar 

  18. C. Shen, Y. Liu, J. Wu, C. Xu, D. Cui, Z. Li, Q. Liu, Y. Li, Y. Wang, X. Cao, H. Kumazoe, F. Shimojo, A. Krishnamoorthy, R.K. Kalia, A. Nakano, P.D. Vashishta, M.R. Amer, A.N. Abbas, H. Wang, W. Wu, C. Zhou, Tellurene photodetector with high gain and wide bandwidth. ACS Nano 14, 303–310 (2020)

    Article  CAS  Google Scholar 

  19. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Article  CAS  Google Scholar 

  20. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013)

    Article  CAS  Google Scholar 

  21. G. Siegel, Y.P.V. Subbaiah, M.C. Prestgard, A. Tiwari, Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition, APL Mater. 3, 056103 (2015)

  22. C.J. Docherty, P. Parkinson, H.J. Joyce, M.-H. Chiu, C.-H. Chen, M.-Y. Lee, L.-J. Li, L.M. Herz, M.B. Johnston, Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano 8, 11147–11153 (2014)

    Article  CAS  Google Scholar 

  23. V. Natarajan, M. Ahmad, J.P. Sharma, A. Sathya, P.K. Sharma, R. Thangaraj, Interfacial charge-transfer for robust Raman quenching in staggered band aligned n-SnS2/p-rGO heterostructures, Appl. Surf. Sci. 550, 149356 (2021)

  24. X. Zhou, N. Zhou, C. Li, H. Song, Q. Zhang, X. Hu, L. Gan, H. Li, J. Lü, J. Luo, J. Xiong, T. Zhai, Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors, 2D Mater. 4, 025048 (2017)

  25. J.-J. Tao, J. Jiang, S.-N. Zhao, Y. Zhang, X.-X. Li, X. Fang, P. Wang, W. Hu, Y.H. Lee, H.-L. Lu, D.-W. Zhang, Fabrication of 1D Te/2D ReS2 mixed-dimensional van der waals p-n heterojunction for high-performance phototransistor. ACS Nano 15, 3241–3250 (2021)

    Article  CAS  Google Scholar 

  26. Z. Zhang, Q. Qian, B. Li, K.J. Chen, Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces. 10, 17419–17426 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this project by the U.S. National Science Foundation (Awards # 1831133 and #2122044). S.H. acknowledges the support from the National Science Foundation under Grant No. ECCS-1943895. This work was performed in part at the Duke University Shared Materials Instrumentation Facility (SMIF), a member of the North Carolina Research Triangle Nanotechnology Network, which is supported by the National Science Foundation under Grant ECCS-1542015 as part of the National Nanotechnology Coordinated Infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

BC conceived the idea and performed device integration, BC, MC, TL and BA carried out the synthesis and characterization, KZ and SH performed low-temperature PL measurements, BC, KZ and SH analyzed the results. All authors reviewed and revised the manuscript. FY supervised the project.

Corresponding author

Correspondence to Fei Yan.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitara, B., Zhang, K., Cervantes, M.Y.G. et al. Probing charge transfer in 2D MoS2/tellurene type-II p–n heterojunctions. MRS Communications 11, 868–872 (2021). https://doi.org/10.1557/s43579-021-00117-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00117-w

Keywords

Navigation