Skip to main content
Log in

Fe2O3/graphene nanocomposites as heterogeneous Fenton catalysts: Correlation studies on catalyst dosage, graphene loading and adsorption kinetics on methylene blue degradation

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this work, nanocomposites of hexagon shaped Fe2O3 decorating few layered graphene sheets was prepared as an effective and stable heterogeneous Fenton catalyst for the efficient degradation of methylene blue (MB) dye the degradation capability of the prepared. The results indicated that the fast removal of dyes follow second order kinetics with high correlation coefficient values (r2 > 0.95). The plausible reaction process for better understanding the nature of reactive oxidation species involved in the Fenton reaction were also presented. The exceptional degrading ability and adsorption of nanocomposites substantiated their potential for wastewater remediation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. E. Cox, The Role of Water in Socio-Economic Development (UNESCO, Paris, 1987)

    Google Scholar 

  2. X. Liu, L. Yan, W. Yin, L. Zhou, G. Tian, J. Shi, Z. Yang, D. Xiao, Z. Gu, Y. Zhao, A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J. Mater. Chem. A. 2, 12296–12303 (2014). https://doi.org/10.1039/C4TA00753K

    Article  CAS  Google Scholar 

  3. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 209, 172–184 (2014). https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  4. Y. Xie, F. Chen, J. He, J. Zhao, H. Wang, Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation. J. Photochem. Photobiol. 136, 235–240 (2000). https://doi.org/10.1016/j.apcatb.2007.09.026

    Article  CAS  Google Scholar 

  5. A. Dawbrowski, Adsorption: From theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001). https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  Google Scholar 

  6. R. Andreozzi, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 53, 51–59 (1999). https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  7. J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light comparison with titanium oxide. Appl. Catal. B 34, 321–333 (2001). https://doi.org/10.1016/S0926-3373(01)00225-9

    Article  CAS  Google Scholar 

  8. Z. Xu, M. Zhang, J. Wu, J. Liang, L. Zhou, B. Lü, Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst. Water Sci. Technol. 68, 2178–2185 (2013). https://doi.org/10.2166/wst.2013.475

    Article  CAS  Google Scholar 

  9. Z. Xu, Y. Yu, D. Fang, J. Xu, J. Liang, L. Zhou, Microwave-ultrasound assisted synthesis of β-FeOOH and its catalytic property in a photo-Fenton-like process. Ultrason. Sonochem. 27, 287–295 (2015). https://doi.org/10.1016/j.ultsonch.2015.05.039

    Article  CAS  Google Scholar 

  10. S. Chou, C. Huang, Y. Huang, Heterogeneous and homogeneous catalytic oxidation by supported γ -FeOOH in a fluidized-bed reactor: kinetic approach. Environ. Sci. Technol. 35, 1247–1251 (2001). https://doi.org/10.1021/es001129b

    Article  CAS  Google Scholar 

  11. M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: A review. Appl. Catal. B 176–177, 249–265 (2015). https://doi.org/10.1016/j.apcatb.2015.04.003

    Article  CAS  Google Scholar 

  12. J. Feng, X. Hu, L.Y. Po, Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: A comparative study. Environ. Sci. Technol. 38, 5773–5778 (2004). https://doi.org/10.1021/es049811j

    Article  CAS  Google Scholar 

  13. F. Reaction, Adsorption performance of methyl violet via α-Fe2O3@porous hollow carbonaceous microspheres and its effective regeneration through a Fenton-like reaction. Catalysts 6, 1–17 (2016). https://doi.org/10.3390/catal6040058

    Article  CAS  Google Scholar 

  14. H. Hassan, B.H. Hameed, Oxidative decolorization of acid red 1 solutions by Fe-zeolite Y type catalyst. Desalination 276, 45–52 (2011). https://doi.org/10.1016/j.desal.2011.03.018

    Article  CAS  Google Scholar 

  15. M. Dükkanci, G. Gündüz, S. Yilmaz, R.V. Prihod’ko, Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J. Hazard. Mater. 181, 343–350 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.016

    Article  CAS  Google Scholar 

  16. H. Bel Hadjltaief, P. Da Costa, P. Beaunier, M.E. Gálvez, M. Ben Zina, Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Appl. Clay Sci. 91–92, 46–54 (2014). https://doi.org/10.1016/j.clay.2014.01.020

    Article  CAS  Google Scholar 

  17. J. He, W. Ma, J. Zhao, Photooxidation of azo dye in aqueous dispersions of H2O2/–FeOOH. Appl. Catal. B 39, 211–220 (2002). https://doi.org/10.1016/S0926-3373(02)00085-1

    Article  CAS  Google Scholar 

  18. Y. Fu, Q. Wei, B. Lu, X. Wang, S. Sun, Stem-like nano-heterostructural MWCNTs/α-Fe2O3@TiO2 composite with high lithium storage capability. J. Alloys Compd. 684, 419–427 (2016). https://doi.org/10.1016/j.jallcom.2016.05.185

    Article  CAS  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  20. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  21. S.-H. Chan, J.-W. Chen, H.-P. Chen, H.-S. Wei, M.-C. Li, S.-H. Chen, C.-C. Lee, C.-C. Kuo, The deviation of growth model for transparent conductive graphene. Nanoscale Res. Lett. 9, 581 (2014). https://doi.org/10.1186/1556-276X-9-581

    Article  CAS  Google Scholar 

  22. F. Liu, S. Chung, G. Oh, T.S. Seo, A three-dimensional graphene oxide nanostructure for fast and efficient dye removal. ACS Appl. Mater. Interfaces 4, 922–927 (2012). https://doi.org/10.1021/am201590z

    Article  CAS  Google Scholar 

  23. P.J. Sephra, P. Baraneedharan, M. Sivakumar, T.D. Thangadurai, K. Nehru, In situ growth of hexagonal shaped α-Fe2O3 nanostructures over few layered graphene by hydrothermal method and their electrochemical performance. J. Mater. Sci. 29, 6898–6908 (2018). https://doi.org/10.1007/s10854-018-8676-1

    Article  CAS  Google Scholar 

  24. K.S. Lee, S. Park, W. Lee, Y.S. Yoon, Hollow nanobarrels of α-Fe2O3 on reduced graphene oxide as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 2027–2034 (2016). https://doi.org/10.1021/acsami.5b10342

    Article  CAS  Google Scholar 

  25. G. Kausalya, N. Manjubaashini, P. Jerome, R. Karvembu, T. Daniel Thangadurai, Single crystal cupric oxide nanoflakes with facets for Pb2+ ion adsorption and methylene blue dye decolorization. Mater. Lett. 185, 218–221 (2016). https://doi.org/10.1016/j.matlet.2016.08.142

    Article  CAS  Google Scholar 

  26. M.N. Rao, Y.H. Rao, C. Chakrapani, C.S. Babu, Adsorption studies of methylene blue dye using prepared low-cost activated Kaza’s Carbons. J. Chem. Pharma. Res. 3, 363–375 (2011)

    CAS  Google Scholar 

  27. A. El Nemr, A. Khaled, O. Abdelwahab, A. El-Sikaily, Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J. Hazard. Mater. 152, 263–275 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.091

    Article  CAS  Google Scholar 

  28. C.V. Ovesen, B.S. Clausen, J. Schiøtz, P. Stoltze, H. Topsøe, J.K. Nørskov, Kinetic implications of dynamical changes in catalyst morphology during methanol synthesis over Cu/ZnO catalysts. J. Catal. 168, 133–142 (1997). https://doi.org/10.1006/jcat.1997.1629

    Article  CAS  Google Scholar 

Download references

Acknowledgments:

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group No (RGP-130) and this research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program, Riyadh, Saudi Arabia.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group No (RGP-130) and this research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program, Riyadh, Saudi Arabia. TDT acknowledges CSIR for financial support (Grant No. 01(2818)/14/EMR-II). The authors acknowledge SNR Sons and Charitable Trust, Coimbatore, for XRD characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Nehru or Percy J. Sephra.

Ethics declarations

Conflict of interest

Authors declare there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3560 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldesoky, G.E., Baraneedharan, P., Reddy, B.M. et al. Fe2O3/graphene nanocomposites as heterogeneous Fenton catalysts: Correlation studies on catalyst dosage, graphene loading and adsorption kinetics on methylene blue degradation. MRS Communications 11, 943–949 (2021). https://doi.org/10.1557/s43579-021-00116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00116-x

Keywords

Navigation