Skip to main content
Log in

Graphene–MCN pn-junction for ultrafast flexible ultraviolet detector

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We venture to design and fabricate thermosensitive flexible ultraviolet (UV) detector, and the response time of the MCN–graphene composite is decreased 7500 times, while the quantum efficiency of MCN is increased from 1 to 13.5%. Meanwhile, the noise level is 104 times lower than that of common GaN and ZnS UV sensors. Additionally, the shortcoming of low light absorption of graphene for use as a sensor is overcome, so that the light responsiveness reaches 0.5 WA. For the first time, a thermal sensor functions at the same level of performance as an flexible optoelectronic sensor.

Graphic abstract

We have constructed a gradient film composed of transition metal oxide semiconductor nanoparticles and two-dimensional graphene. It is found that the gradient film is a pn junction. Due to the response of semiconductor nanoparticles to ultraviolet, further research shows that PN junction can be used as an ultraviolet detector, which overcomes the weakness of poor absorbance of graphene as a photodetector. At the same time, using the characteristics of graphene Dirac cone, A UV detector with very low noise is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007)

    Article  CAS  Google Scholar 

  2. F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)

    Article  CAS  Google Scholar 

  3. M.A. Ibrahem, E. Verrelli, K.T. Lai et al., Dual wavelength (ultraviolet and green) photodetectors using solution processed zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 9, 36971–36979 (2017)

    Article  CAS  Google Scholar 

  4. Q. Xu, L. Cheng, L. Meng et al., Flexible self-powered ZnO film UV sensor with a high response. ACS Appl. Mater. Interfaces 11, 26127–26133 (2019)

    Article  CAS  Google Scholar 

  5. L. Li, L. Gu, Z. Lou, Z. Fan, G. Shen, ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano 11, 4067–4076 (2017)

    Article  CAS  Google Scholar 

  6. S.J. Kim, J. Han, B. Kim, M. Meyyappan, Single walled carbon nanotube based air pocket encapsulated ultraviolet sensor. ACS Sens. 2, 1679–1683 (2017)

    Article  CAS  Google Scholar 

  7. S. Pyo, J. Choi, J. Kim, A fully transparent, flexible, sensitive, and visible-blind ultraviolet sensor based on carbon nanotube–graphene hybrid. Adv. Electron. Mater. 5, 1800737 (2019)

    Article  Google Scholar 

  8. A.F. Carvalho, A.J.S. Fernandes, C. Leitão et al., Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 28, 1805271 (2018)

    Article  Google Scholar 

  9. X. Fang, Y. Bando, M. Liao et al., Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)

    Article  CAS  Google Scholar 

  10. S. Wu, W. Li, B. Chu et al., Visible-blind ultraviolet sensitive photo-diode with high responsibility and long term stability. Appl. Phys. Lett. 97, 023306 (2010)

    Article  Google Scholar 

  11. F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014)

    Article  CAS  Google Scholar 

  12. J. Li, L. Niu, Z. Zheng, F. Yan, Photosensitive graphene transistors. Adv. Mater. 26, 5239–5273 (2014)

    Article  CAS  Google Scholar 

  13. L. Kang, X. Yu, X. Zhao et al., Space-confined microwave synthesis of ternary-layered BiOCl crystals with high-performance ultraviolet photodetection. InfoMat 2, 593–600 (2020)

    Article  CAS  Google Scholar 

  14. Z. Wang, R. Yu, X. Wang, W. Wu, Z.L. Wang, Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect. Adv. Mater. 28, 6880–6886 (2016)

    Article  CAS  Google Scholar 

  15. T. Lim, S.M. Jung, Y. Kang, S. Ju, Light-liquid selective filter-mounted nanowire-networked polyurethane fiber for an ultraviolet sensor. Adv. Mater. Interfaces 6, 1901015 (2019)

    Article  CAS  Google Scholar 

  16. S. Kaushik, R. Singh, 2D layered materials for ultraviolet photodetection: a review. Adv. Opt. Mater. 9, 2002214 (2021)

    Article  CAS  Google Scholar 

  17. D. You, C. Xu, J. Zhao et al., Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection. Adv. Opt. Mater. 7, 1801522 (2019)

    Article  Google Scholar 

  18. C. Anichini, W.O. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 486–498 (2018)

    Article  Google Scholar 

  19. L. Su, Z. Yang, X. Wang et al., Flexible diodes/transistors based on tunable p–n type semi-conductivity in graphene/Mn–Co–Ni–O nanocomposites. Research 2021, 9802795 (2021)

    Article  CAS  Google Scholar 

  20. J. Park, J.C. Hwang, G.G. Kim, J.U. Park, Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2, 33–56 (2019)

    Article  Google Scholar 

  21. S. Bi, Q. Li, Z. He et al., Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel. Nano Energy 66, 104101 (2019)

    Article  CAS  Google Scholar 

  22. K. Asare-Yeboah, Q. Li, C. Jiang et al., High performance and efficiency resonant photo-effect-transistor by near-field nano-strip-controlled organic light emitting diode gate. J. Phys. Chem. Lett. 11(16), 6526–6534 (2020)

    Article  CAS  Google Scholar 

  23. Q. Li, C. Jiang, S. Bi, K. Asare-Yeboah, Z. He, Y. Liu, Photo-triggered logic circuits assembled on integrated illuminants and resonant nanowires. ACS Appl. Mater. Interfaces 12(41), 46501–46508 (2020)

    Article  CAS  Google Scholar 

  24. L.H. Su, K. Chen, Y.Q. Liu et al., The optical spectrum of UVLED excitation using NTC nanometer particles to replace rare earth doping. MRS Adv. 4(33–34), 1895–1904 (2019)

    Article  CAS  Google Scholar 

  25. J. Fang, Z. Zhou, M. Xiao, Z. Lou, Z. Wei, G. Shen, Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2, 291–317 (2020)

    Article  CAS  Google Scholar 

  26. J.P. Chung, S.W. Oh, A residual compensation method for the calibration equation of negative temperature coefficient thermistors. Thermochim. Acta 616, 27–32 (2015)

    Article  CAS  Google Scholar 

  27. L.H. Su, W. Huang, Z.A. Zou, Y.P. Zhou, Preparation method of thermosensitive film for NTC powder and graphene compound plane. ZL201810197960X, China, 2018

  28. H. Liu, Y. Lv, S. Li et al., A solar ultraviolet sensor based on fluorescent polyoxometalate and viologen. J. Mater. Chem. C 5, 9383–9388 (2017)

    Article  CAS  Google Scholar 

  29. T. Park, K.E. Lee, N. Kim, Y. Oh, T.K. Yoo, M.K. Um, Aspect ratio-controlled ZnO nanorods for highly sensitive wireless ultraviolet sensor applications. J. Mater. Chem. C 5, 12256–12263 (2017)

    Article  CAS  Google Scholar 

  30. A.W. Ting, J.J. Lin, UV spectrum of the simplest deuterated Criegee intermediate CD2OO. J. Chin. Chem. Soc. 64, 360–368 (2017)

    Article  CAS  Google Scholar 

  31. Y. Zhao, C. Li, L. Shen, Recent advances on organic–inorganic hybrid perovskite photodetectors with fast response. InfoMat 1, 164–182 (2019)

    Article  CAS  Google Scholar 

  32. H. Chang, Z. Sun, K.Y. Ho et al., A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258–264 (2011)

    Article  CAS  Google Scholar 

  33. N. Sihar, T.Y. Tiong, C.F. Dee et al., Ultraviolet light-assisted copper oxide nanowires hydrogen gas sensor. Nanoscale Res. Lett. 13, 150 (2018)

    Article  Google Scholar 

  34. X. Wan, Y. Xu, H. Guo et al., A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? NPJ Mater. Appl. 1, 1–8 (2017)

    Article  Google Scholar 

  35. X. Wu, B. Zhou, J. Zhou, Y. Chen, Y. Chu, J. Huang, Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 14, 1800527 (2018)

    Article  Google Scholar 

  36. Z. Zhang, C. Li, Y. Lu et al., Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 10, 5343–5350 (2019)

    Article  CAS  Google Scholar 

  37. V. Nagarajan, K.-M. Chen, H.-Y. Lin et al., Low-frequency noise characterization of AlGaN/GaN HEMTs and MIS-HEMTs under UV illumination. IEEE Trans. Nano 19, 405–409 (2020)

    CAS  Google Scholar 

  38. A. Kumar, M. Kumar, V. Bhatt et al., ZnS microspheres-based photoconductor for UV light-sensing applications. Chem. Phys. Lett. 763, 138162 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Zhen Feng and Dr. Chen AnS from XiDian University for testing and providing electrical performance data of the gradient thin film semiconductor pn junction. We are also grateful to Liwen Bianji (Edanz) (www.liwenbianji.cn) who edited the first draft of this manuscript. The staff who supported this research work also include: Bin Lian, Zhida Yang, Miaomiao Guo and Yujing Zhang (Dongguan Sanhang Innovation Institute). The work supported by 2019 Guangdong Special Funds (2019B090904007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Su or Shengzhong Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Su, L., Li, Y. et al. Graphene–MCN pn-junction for ultrafast flexible ultraviolet detector. MRS Communications 11, 862–867 (2021). https://doi.org/10.1557/s43579-021-00109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00109-w

Keywords

Navigation