Skip to main content

Photocatalytic degradation of methyl orange on TiO2/biochar assisted by ionic liquids

Abstract

TiO2 was synthesized on biochar derived from wood waste assisted by ionic liquids (1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4])). We compared the effects of photocatalysts synthesized with [C4mim]Cl (Ti–WB–Cl) and [C4mim][BF4] (Ti–WB–BF4) on the degradation of methyl orange. Using XRD, the nanoparticles of anatase TiO2 in Ti–WB–Cl and Ti–WB–BF4 were formed. Within 120 min under UV, the 88.1 and 99.8% of methyl orange were degraded, respectively. Moreover, by-products were barely observed using Ti–WB–BF4 photocatalyst. By XPS spectra, the Ti–WB–BF4 with carbon and fluorine incorporation suggests that enhanced photocatalytic degradation of methyl orange had occurred.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016)

    Google Scholar 

  2. 2.

    G. Moussavi, M. Mahmoudi, Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 168, 806–812 (2009)

    CAS  Article  Google Scholar 

  3. 3.

    H.S. Freeman and G.N. Mock, Dye Application, Manufacture of Dye Intermediates and Dyes, Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology. (Springer, 2007) pp. 499–590

  4. 4.

    T. Yahagi, M. Degawa, Y. Seino, T. Matsushima, M. Nagao, T. Sugimura, Y. Hashimoto, Mutagenicity of carcinogenic azo dyes and their derivatives. Cancer Lett. 1, 91–96 (1975)

    CAS  Article  Google Scholar 

  5. 5.

    Trakoli, Some Aromatic Amines, Organic Dyes, and Related Exposures, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. No. 99. (World Health Organization, Lyon, France, 2010)

  6. 6.

    N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Bio-Technol. 19, 543–560 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    L. Su, H. Zhang, K. Oh, N. Liu, Y. Luo, H. Cheng, G. Zhang, X. He, Activated biochar derived from spent Auricularia auricula substrate for the efficient adsorption of cationic azo dyes from single and binary adsorptive systems. Water Sci. Technol. 84, 101–121 (2021)

    CAS  Article  Google Scholar 

  8. 8.

    P. Srivatsav, B.S. Bhargav, V. Shanmugasundaram, J. Arun, K.P. Gopinath, A. Bhatnagar, Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: a review. Water 12, 27 (2020)

    Article  Google Scholar 

  9. 9.

    M. Choudhary, R. Kumar, S. Neogi, Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 392, 122441 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    R. Shan, L.L. Lu, J. Gu, Y.Y. Zhang, H.R. Yuan, Y. Chen, B. Luo, Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Process. 114, 12 (2020)

    Article  Google Scholar 

  11. 11.

    L.L. Lu, R. Shan, Y.Y. Shi, S.X. Wang, H.R. Yuan, A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 222, 391–398 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    H.H. Lyu, Q.R. Zhang, B.X. Shen, Application of biochar and its composites in catalysis. Chemosphere 240, 11 (2020)

    Article  Google Scholar 

  13. 13.

    J.E. Lee, Y.K. Park, Applications of modified biochar-based materials for the removal of environment pollutants: a mini review. Sustain. 12, 15 (2020)

    Google Scholar 

  14. 14.

    Y.T. Hsieh, M.C. Lai, H.L. Huang, I.W. Sun, Speciation of cobalt-chloride-based ionic liquids and electrodeposition of Co wires. Electrochim. Acta 117, 217–223 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    H.L. Huang, Y.J. Wei, Speciation of chromium compounds from humic acid-zeolite Y to an ionic liquid during extraction. Chemosphere 194, 390–395 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    T. Welton, Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)

    CAS  Article  Google Scholar 

  17. 17.

    Z.Q. He, P. Alexandridis, Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 17, 18238–18261 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    H. Wender, A.F. Feil, L.B. Diaz, C.S. Ribeiro, G.J. Machado, P. Migowski, D.E. Weibel, J. Dupont, S.R. Teixeira, Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl. Mater. Interfaces 3, 1359–1365 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    W.J. Li, D.Z. Li, Y.M. Li, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J. Phys. Chem. C 116, 3552–3560 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    H. Znad, K. Abbas, S. Hena, M.R. Awual, Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J. Environ. Chem. Eng. 6, 218–227 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    H.L. Huang, H.H. Huang, Y.J. Wei, Reduction of toxic Cr(VI)-humic acid in an ionic liquid. Spectroc. Acta Part B 133, 9–13 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    J.H. Yang, X.G. Luo, Ag-doped TiO2 immobilized cellulose-derived carbon beads: one-pot preparation, photocatalytic degradation performance and mechanism of ceftriaxone sodium. Appl. Surf. Sci. 542, 12 (2021)

    Google Scholar 

  23. 23.

    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    CAS  Article  Google Scholar 

  24. 24.

    S. Varnagiris, A. Medvids, M. Lelis, D. Milcius, A. Antuzevics, Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis. J. Photochem. Photobiol. A 382, 9 (2019)

    Article  Google Scholar 

  25. 25.

    X.Y. Wu, S. Yin, Q. Dong, C.S. Guo, H.H. Li, T. Kimura, T. Sato, Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl. Catal. B 142, 450–457 (2013)

    Article  Google Scholar 

  26. 26.

    M. Paszkiewicz, J. Luczak, W. Lisowski, P. Patyk, A. Zaleska-Medynska, The ILs-assisted solvothermal synthesis of TiO2 spheres: the effect of ionic liquids on morphology and photoactivity of TiO2. Appl. Catal. B 184, 223–237 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    E. Sadeghinezhad, A.R. Akhiani, H.S.C. Metselaar, S. Tahan Latibari, M. Mehrali, M. Mehrali, Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids. Appl. Therm. Eng. 175, 11538 (2020)

    Article  Google Scholar 

  28. 28.

    M. Jahanshahi, E. Kowsari, V. Haddadi-Asl, M. Khoobi, B. Bazri, M. Aryafard, J.H. Lee, F.B. Kadumudi, S.Talebian, N. Kamaly, M. Mehrali, and A. Dolatshahi-Pirouz, An innovative and eco-friendly modality for synthesis of highly fluorinated graphene by an acidic ionic liquid: Making of an efficacious vehicle for anti-cancer drug delivery. Appl. Surf. Sci. 515, No. 146071 (2020)

  29. 29.

    W. He, Y. Wang, C. Jiang, L. Lu, Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts. Chem. Soc. Rev. 45, 2396–2409 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    F.T. Li, X.J. Wang, Y. Zhao, J.X. Liu, Y.J. Hao, R.H. Liu, D.S. Zhao, Ionic-liquid-assisted synthesis of high-visible-light-activated N-B-F-tri-doped mesoporous TiO2 via a microwave route. Appl. Catal. B-Environ. 144, 442–453 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Ministry of Science and Technology ROC (MOST 109-2221-E-239-014) is gratefully acknowledged. The authors gratefully acknowledge the use of XRD 5100 and ESCA 000200 equipments belonging to the Core Facility Center of National Cheng Kung University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hsin-Liang Huang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 86 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Huang, ZH. & Tzeng, LS. Photocatalytic degradation of methyl orange on TiO2/biochar assisted by ionic liquids. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00106-z

Download citation

Keywords

  • Catalytic
  • Ti
  • Environmentally benign
  • Organic
  • Degradable
  • XPS