Skip to main content

The triple junction features of 0.5 wt.% Si electrical steel in electrically assisted forming

Abstract

The triple junction features of 0.5 wt.% Si electrical steel in electrically assisted forming were investigated. Specimens were electrically stretched, measured with electron backscatter diffraction (EBSD) method. The results show triple junction curvature, and the difference between the maximum and minimum dihedral angles and specific triple junctions are promoted. It is concluded that increased deviation from the equilibrium of dihedral angles can be attributed to the increased triple junction curvature induced by electric current. The increased triple junction curvature enhances the driving force for triple junction motion and reduces the retarding effect of particles on the motion of triple junctions.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. 1.

    A.-H. Chen, H.-R. Guo, H.-L. Li, T. Emi, Formation of edge crack in 14% Si non-oriented electrical steel during hot rolling. J. Iron. Steel. Res. Int. 21, 269 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    M.H. Han, S. Lee, N.J. Kim, K.J. Lee, T. Chung, G. Byun, Analysis and prevention of edge cracking phenomenon during hot rolling of non-oriented electrical steel sheets. Mater. Sci. Eng. A 264, 47 (1999)

    Article  Google Scholar 

  3. 3.

    Z.S. Xu, Z.H. Lai, Y.X. Chen, Effect of electric current on the recrystallization behavior of cold worked alpha-Ti. Scripta Metall. 22, 187 (1988)

    CAS  Article  Google Scholar 

  4. 4.

    A. Hosoi, T. Nagahama, Y. Ju, Fatigue crack healing by a controlled high density electric current field. Mater. Sci. Eng. A 533, 38 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, T. Watanabe, Effects of grain boundary and triple junction-character on intergranular fatigue crack nucleation in polycrystalline aluminum. J. Mater. Sci. 43, 3792 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    E.M. Lehockey, G. Palumbo, P. Lin, Grain boundary structure effects on cold work embrittlement of microalloyed steels. Scripta Mater. 39, 353 (1998)

    CAS  Article  Google Scholar 

  7. 7.

    O.K. Johnson, C.A. Schuh, The uncorrelated triple junction distribution function: Towards grain boundary network design. Acta Mater. 61, 2863 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    L.S. Shvindlerman, G. Gottstein, Grain boundary and triple junction migration. Mater. Sci. Eng. A 302, 141 (2001)

    Article  Google Scholar 

  9. 9.

    G. Gottstein, A.H. King, L.S. Shvindlerman, The effect of triple-junction drag on grain growth. Acta Mater. 48, 397 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    S.-C. Lin, M.-W. Liu, M.P. Gururajan, Wu. Kuo-An, Modified Young’s equation for equilibrium dihedral angles of grain boundary grooves in thin films at the nanoscale. Acta Mater. 102, 364 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    R.A. Marks, A.M. Glaeser, Equilibrium and stability of triple junctions in anisotropic systems. Acta Mater. 60, 349 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    A.H. King, The Geometric and Thermodynamic Properties of Grain Boundary Junctions. Interface Sci. 7, 251 (1999)

    CAS  Article  Google Scholar 

  13. 13.

    G. Gottstein, L.S. Shvindlerman, Triple junction drag and grain growth in 2D polycrystals. Acta Mater. 50, 703 (2002)

    CAS  Article  Google Scholar 

  14. 14.

    B. Zhao, G. Gottstein, L.S. Shvindlerman, Triple junction effects in solids. Acta Mater. 59, 3510 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    M.E. Gurtina, L. Anand, Nanocrystalline grain boundaries that slip and separate: A gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. J. Mech. Phys. Solids 56, 184 (2008)

    Article  Google Scholar 

  16. 16.

    E.N. Borodina, V. Bratovb, Non-equilibrium approach to prediction of microstructure evolution for metals undergoing severe plastic deformation. Mater. Charact. 141, 267 (2018)

    Article  Google Scholar 

  17. 17.

    J. Tyler, Effect of power supply type on the electroplastic effect. J. Manuf. Process 56, 1263 (2020)

    Article  Google Scholar 

  18. 18.

    F. Bachmann, R. Hielscher, P.E. Jupp, W. Pantleon, H. Schaeben, E. Wegert, Inferential statistics of electron backscatter diffraction data from within individual crystalline Grains. J. Appl. Cryst. 43, 1338 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    J.E. Burke, D. Turnbull, Recrystallization and grain growth. Prog. Met. Phys. 3, 220 (1952)

    CAS  Article  Google Scholar 

  20. 20.

    B. Zhao, JCh. Verhasselt, L.S. Shvindlerman, G. Gottstein, Measurement of grain boundary triple line energy in copper. Acta Mater. 58, 5646 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    S.G. Protasova, G. Gottstein, D.A. Molodov, V.G. Sursaeva, L.S. Shvindlerman, Triple junction motion in aluminum tricrystals. Acta Mater. 49, 2519 (2001)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lixin Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, B., Li, L. The triple junction features of 0.5 wt.% Si electrical steel in electrically assisted forming. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00105-0

Download citation

Keywords

  • Grain boundaries
  • Microstructure
  • Scanning electron microscopy (SEM)
  • Steel