Skip to main content

Exploring C, H and O isotope-specific adsorption of CO2 and H2O vapour in nanostructured polyaniline

Abstract

Here, we report the analytical observations of adsorption behaviour of the most abundant stable isotopes of CO2 (12C16O2, 13C16O2 and 12C16O18O) and H2O vapour (H216O, H217O, H218O and HD16O) in emeraldine salt form of Polyaniline (ES-PANI) using optical cavity-enhanced absorption spectroscopy technique. Isotopic investigation showed a preferential adsorption of the lighter isotope compared with the heavier isotopes of CO2 by PANI, suggesting the mass-dependent isotopic fractionations through the nanomaterial. Our findings also revealed a unique isotope-specific H2O adsorption by PANI. These results shed a new light on the isotope specificity of CO2 and H2O gas molecules adsorbed in nanostructured polymers.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    B. Chethan, H.G. Raj Prakash, Y.T. Ravikiran, S.C. Vijayakumari, C.V.V. Ramana, S. Thomas, D. Kim, Enhancing humidity sensing performance of polyaniline/water soluble graphene oxide composite. Talanta 196, 337–344 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    S.K. Ponnaiah, P. Periakaruppan, B. Vellaichamy, New electrochemical sensor based on a silver-doped iron oxide nanocomposite coupled with polyaniline and its sensing application for picomolar-level detection of uric acid in human blood and urine samples. J. Phys. Chem. B. 122, 3037–3046 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    L. Wang, H. Huang, S. Xiao, D. Cai, Y. Liu, B. Liu, D. Wang, C. Wang, H. Li, Y. Wang, Q. Li, T. Wang, Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@ cross-linked PANI with p–n heterojunctions. ACS Appl. Mater. Interfaces 6, 14131–14140 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    M.A. Mir, M.A. Bhat, R.A. Naikoo, P. Dipak, R.A. Bhat, R. Tomar, P.K. Sharma, Fabrication of polyaniline/zeolite composites and their response towards nitrogen dioxide. Microporous Mesoporous Mater. 233, 53–61 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    T. Sen, S. Mishra, N.G. Shimpi, Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv. 6, 42196–42222 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    X. Lu, W. Zhang, C. Wang, T.C. Wen, Y. Wei, One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 36, 671–712 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    H. Ullah, A.U.H.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuat. B 220, 534–548 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    S.R. Takpire, S.A. Waghuley, Synthesis of copolymer in PTh-co-PANi-Ti system for photovoltaic application. Mater. Lett. 150, 9–11 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    S.F.H. Karouei, H.M. Moghaddam, P-p heterojunction of polymer/hierarchical mesoporous LaFeO3 microsphere as CO2 gas sensing under high humidity. Appl. Surf. Sci. 479, 1029–1038 (2019)

    Article  Google Scholar 

  11. 11.

    R.V. Barde, Preparation, characterization and CO2 gas sensitivity of polyaniline doped with sodium superoxide (NaO2). Mater. Res. Bull. 73, 70–76 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    M.E. Azim-Araghi, M.J. Jafari, Electrical and gas sensing properties of polyaniline-chloroaluminium phthalocyanine composite thin films. Eur. Phys. J. Appl. Phys. 52, 10402 (2010)

    Article  Google Scholar 

  13. 13.

    S. Maithani, M. Pal, A. Maity, M. Pradhan, Isotope selective activation: a new insight into the catalytic activity of urease. RSC Adv. 7, 31372–31376 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Qin, L. Wang, X. Wang, A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection. Org. Electron. 66, 102–109 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    K.L. Bhowmik, K. Deb, A. Bera, R.K. Nath, B. Saha, Charge transport through polyaniline incorporated electrically conducting functional paper. J. Phys. Chem. C 120, 5855–5860 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, Heterostructured layer growth of polyaniline by vacuum thermal evaporation and fabrication of thin-film capacitors. J. Phys. Chem. C 123, 27959–27968 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    P. Bharadiya, R. Jain, V. Chaudhari, S. Mishra, Graphene oxide-wrapped polyaniline nanorods for supercapacitor applications. Polym. Composite 40(S2), E1716–E1742 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    S. Ahmad, M.M. Ali khan, F. Mohammad, Graphene/nickel oxide-based nanocomposite of polyaniline with special reference to ammonia sensing. ACS Omega. 3, 9378–9387 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    M. Joulazadeh, A.H. Navarchian, M. Niroomand, A comparative study on humidity sensing performances of polyaniline and polypyrrole nanostructures. Adv. Polym. Tech. 33, 21461 (2014)

    Article  Google Scholar 

  20. 20.

    R. Kumar, B.C. Yadav, Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method. Mater. Lett. 167, 300–302 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    H. Gao, K. Lian, Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv. 4, 33091–33113 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    O.N. Timofeeva, B.Z. Lubentsov, Y.Z. Sudakova, D.N. Chernyshov, M.L. Khidekel, Conducting polymer interaction with gaseous substances I. Water. Synth. Met. 40(1), 111–116 (1991)

    CAS  Article  Google Scholar 

  23. 23.

    M.T.S. Chani, K.S. Karimov, F.A. Khalid, S.A. Moiz, Polyaniline based impedance humidity sensors. Solid State Sci. 18, 78–82 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    S. Maithani, A. Maity, M. Pal, S. Bhattacharya, G.D. Banik, C. Ghosh, S. Chaudhuri, M. Pradhan, Isotopic evidences of the preferential coordination between 12CO2 and urease enzyme. Chem. Phys. 520, 21–26 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Technical Research Centre (TRC) of S. N. Bose National Centre for Basic Sciences, Kolkata (No. All1/64/SNB/2014(C)). A. Bera and A. Maiti would like to thank S. N. Bose National Centre for Basic Sciences, Kolkata for providing Post-Doctoral Research Associate Fellowship during execution of the research work.

Author information

Affiliations

Authors

Contributions

M. Pradhan and A. Maity conceived the idea and designed the study. A. Maiti and A. Bera performed the experiments. M. Pradhan, A. Bera and A. Maiti wrote the manuscript. All authors have read the manuscript and finally approved it.

Corresponding author

Correspondence to Manik Pradhan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Maiti, A., Maity, A. et al. Exploring C, H and O isotope-specific adsorption of CO2 and H2O vapour in nanostructured polyaniline. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00104-1

Download citation

Keywords

  • Polymer
  • Polymerization
  • Adsorption
  • Spectroscopy