Skip to main content
Log in

SEM analysis of pop-ins manifested in layered porous geological material

  • Recent Advances in the Chemistry and Materials for Hydrocarbon Recovery Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nanoindentation pop-ins in composite source shale were characterized as Type I and Type II, where the slopes on load–displacement (p–h) curves are defined as Δph = 0 or Δph > 0, respectively. Type I were associated with sudden instantaneous failure as elastic perfectly plastic “Coulomb-type” and sudden grain dislodging, while Type II were related to shear band progressive failure and/or grain sliding or progressive pile-up. Pop-ins were primarily observed when indenting perpendicular to the shale layers. Estimating magnitudes of pop-in energy dissipation varied widely with shale matrix phases. Meanwhile, Type III pop-ins defined by Δph < 0, were never observed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data availability

Data generated or analyzed are included in this article, the supplementary information file, or can be made available upon reasonable request.

References

  1. F.-J. Ulm, Y. Abousleiman, Acta Geotech. 1, 77 (2006)

    Article  Google Scholar 

  2. D.L. Turcotte, E.M. Moores, J.B. Rundle, Phys. Today 67, 34 (2014)

    Article  CAS  Google Scholar 

  3. Y.N. Abousleiman, K.L. Hull, Y. Han, G. Al-Muntasheri, P. Hosemann, S. Parker, C.B. Howard, Acta Geotech 11, 573 (2016)

    Article  Google Scholar 

  4. K.L. Hull, Y.N. Abousleiman, Y. Han, G.A. Al-Muntasheri, P. Hosemann, S.S. Parker, C.B. Howard, SPE J. 22(1), 024 (2017)

    Google Scholar 

  5. J.A. Ortega, F.-J. Ulm, Y. Abousleiman, Geophysics 74, D65 (2009)

    Article  Google Scholar 

  6. C.P. Bobko, B. Gathier, J.A. Ortega, F.-J. Ulm, L. Borges, Y.N. Abousleiman, Int. J. Numer. Anal. Methods Geomech. 2011, 35 (1854)

    Google Scholar 

  7. P. Maiti, A. Eqbal, M. Bhattacharya, P.S. Das, J. Ghosh, A.K. Mukhopadhyay, Ceram. Int. 45, 8204 (2019)

    Article  CAS  Google Scholar 

  8. T. Ohmura, M. Wakeda, Materials 2021, 14 (1879)

    Google Scholar 

  9. C. Bobko, F.-J. Ulm, Mech. Mater. 40, 318 (2008)

    Article  Google Scholar 

  10. J.A. Ortega, F.-J. Ulm, Y. Abousleiman, Acta Geotech. 2, 155 (2007)

    Article  Google Scholar 

  11. G. Zhang, Z. Wei, R.E. Ferrell, Appl. Clay Sci. 43, 271 (2009)

    Article  CAS  Google Scholar 

  12. K.C. Bennett, L.A. Berla, W.D. Nix, R.I. Borja, Acta Geotech. 10, 1 (2015)

    Article  CAS  Google Scholar 

  13. M.S. Kamath, M.F. Gittos, The incidence of pop-ins in fracture toughness testing, The Welding Institute Research Bulletin, April 1979.

  14. S. Suresh, T.-G. Nieh, B.W. Choi, Scr. Mater. 41, 951 (1999)

    Article  CAS  Google Scholar 

  15. J.R. Morris, H. Bei, G.M. Pharr, E.P. George, Phys. Rev. Lett. 106, 165502 (2011)

    Article  CAS  Google Scholar 

  16. C.P. Bobko, J.A. Ortega, F.-J. Ulm, Appl. Clay Sci. 46, 425 (2009)

    Article  CAS  Google Scholar 

  17. J. Zhang, L. Hu, R. Pant, Y. Yu, Z. Wei, G. Zhang, Appl. Clay Sci. 80–81, 267 (2013)

    Article  Google Scholar 

  18. Z. Wang, H. Bei, E.P. George, G.M. Pharr, Scr. Mater. 65, 469 (2011)

    Article  CAS  Google Scholar 

  19. C. Kearney, Z. Zhao, B.J.F. Bruet, R. Radovitzky, M.C. Boyce, C. Ortiz, Phys. Rev. Lett. 96, 255505 (2006)

    Article  CAS  Google Scholar 

  20. V. Navarro, O.R. de la Fuente, A. Mascaraque, J.M. Rojo, Phys. Rev. Lett. 100, 105504 (2008)

    Article  CAS  Google Scholar 

  21. R. Abram, D. Chrobak, R. Nowak, Phys. Rev. Lett. 118, 095502 (2017)

    Article  CAS  Google Scholar 

  22. J.D. Kiely, R.Q. Hwang, J.E. Houston, Phys. Rev. Lett. 81, 4424 (1998)

    Article  CAS  Google Scholar 

  23. J. Li, K.J.V. Vliet, T. Zhu, S. Yip, S. Suresh, Nature 418, 307 (2002)

    Article  CAS  Google Scholar 

  24. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, H.S. Leipner, Phys. Rev. B 67, 172101 (2003)

    Article  Google Scholar 

  25. L. Li, C. Ortiz, Nat. Mater. 13, 501 (2014)

    Article  CAS  Google Scholar 

  26. S.Z. Chavoshi, S. Xu, MRS Commun. 8, 15 (2018)

    Article  CAS  Google Scholar 

  27. S.K. Bhuyan, J.E. Bradby, S. Ruffell, B. Haberl, C. Saint, J.S. Williams, P. Munroe, MRS Commun. 2, 9 (2012)

    Article  CAS  Google Scholar 

  28. M. Haghshenas, V. Bhakhri, R. Oviasuyi, R.J. Klassen, MRS Commun. 5, 513 (2015)

    Article  CAS  Google Scholar 

  29. S. Maxwell, Lead Edge 30, 340 (2011)

    Article  Google Scholar 

  30. H. Chen, X. Meng, F. Niu, Y. Tang, C. Yin, F. Wu, J. Geophys. Res. Solid Earth 123, 1659 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jordan Kone for assistance with SEM imaging.

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Hull.

Ethics declarations

Conflict of interest

There is no conflict of interest to report.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 3239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hull, K.L., Abousleiman, Y.N. SEM analysis of pop-ins manifested in layered porous geological material. MRS Communications 11, 747–754 (2021). https://doi.org/10.1557/s43579-021-00102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00102-3

Keywords

Navigation