Skip to main content

Bi2Te3 filaments via extrusion and pressureless sintering of Bi2Te3-based inks


Inks containing sub-20 µm particles of doped bismuth telluride (n-type Bi2Te2.73Se0.3 or p-type (Bi0.5Sb1.5)Te3) are extruded into 330 µm diameter filaments. When solid-state sintered up to 857 K under no pressure, the filaments only partially densify, with over 20% porosity remaining. Coating the filament with TeO2 powder, followed by hydrogen reduction to liquid Te, enables liquid phase sintering at 710 K, with rapid densification to less than 5% porosity within 1 h. Coating with a stoichiometric blend of Bi2O3 + 3TeO2 powders, followed by hydrogen reduction to liquid Bi and Te, provides transient liquid phase sintering at 808 K and subsequent reaction to Bi2Te3, resulting in fast filament densification, to less than 5% porosity within 10 min without residual Te.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    H.J. Goldsmid, Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577–2592 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    M. Orrill, S. LeBlanc, Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges: review. J. Appl. Polym. Sci. 134, 44256 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.-D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 47, 1954–1960 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    J.L. Cui, Optimization of p-type segmented FeSi2/Bi2Te3 thermoelectric material prepared by spark plasma sintering. Mater. Lett. 57, 4074–4078 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    C.H. Lee, Y.W. Shin, H.S. Shin, D.H. Yeo, S. Nahm, The synthesis and the pressureless sintering of Bi2Te3 for thermoelectric application. Nanosci. Nanotechnol. Lett. 9, 40–44 (2017).

    Article  Google Scholar 

  9. 9.

    S. Jo, S. Choo, F. Kim, S.H. Heo, J.S. Son, Ink processing for thermoelectric materials and power-generating devices. Adv. Mater. 31, 1804930 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    C. Navone, M. Soulier, J. Testard, J. Simon, T. Caroff, Optimization and fabrication of a thick printed thermoelectric device. J. Electron. Mater. 40, 789–793 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    C. Ou, A.L. Sangle, A. Datta, Q. Jing, T. Busolo, T. Chalklen, V. Narayan, S. Kar-Narayan, Fully printed organic-inorganic nanocomposites for flexible thermoelectric applications. ACS Appl. Mater. Interfaces 10, 19580–19587 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    M. He, Y. Zhao, B. Wang, Q. Xi, J. Zhou, Z. Liang, 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 11, 5889–5894 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    K. Wu, Y. Yan, J. Zhang, Y. Mao, H. Xie, J. Yang, Q. Zhang, C. Uher, X. Tang, Preparation of n-type Bi2Te3 thermoelectric materials by non-contact dispenser printing combined with selective laser melting. Phys. Status Solidi Rapid Res. Lett. 11, 1700067 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    D. Madan, Z. Wang, A. Chen, R. Winslow, P.K. Wright, J.W. Evans, Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3. Appl. Phys. Lett. 104, 013902 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    F. Ren, P. Menchhofer, J. Kiggans, H. Wang, Development of thermoelectric fibers for miniature thermoelectric devices. J. Electron. Mater. 45, 1412–1418 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    F. Kim, B. Kwon, Y. Eom, J.E. Lee, S. Park, S. Jo, S.H. Park, B.-S. Kim, H.J. Im, M.H. Lee, T.S. Min, K.T. Kim, H.G. Chae, W.P. King, J.S. Son, 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy. 3, 301 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    J. Peng, I. Witting, N.R. Geisendorfer, M. Wang, M. Chang, A. Jakus, C. Kenel, X. Yan, R.N. Shah, J.G. Snyder, M. Grayson, 3D-extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  18. 18.

    S.L. Taylor, A.E. Jakus, R.N. Shah, D.C. Dunand, Iron and nickel cellular structures by sintering of 3D-printed oxide or metallic particle inks. Adv. Eng. Mater. 19, 1600365 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    S.L. Taylor, A.E. Jakus, K.D. Koube, A.J. Ibeh, N.R. Geisendorfer, R.N. Shah, D.C. Dunand, Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut. 143, 1–8 (2018).

    Article  Google Scholar 

  20. 20.

    S.L. Taylor, A.J. Ibeh, A.E. Jakus, R.N. Shah, D.C. Dunand, NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering. Acta Biomater. 76, 359–370 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    A.E. Jakus, S.L. Taylor, N.R. Geisendorfer, D.C. Dunand, R.N. Shah, Metallic architectures from 3D-printed powder-based liquid inks. Adv. Funct. Mater. 25, 6985–6995 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636–4648 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    M. Calvo, A.E. Jakus, R.N. Shah, R. Spolenak, D.C. Dunand, Microstructure and processing of 3D printed tungsten microlattices and infiltrated W-Cu composites. Adv. Eng. Mater. 20(9), 1800354 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    B.Y. Ahn, D. Shoji, C.J. Hansen, E. Hong, D.C. Dunand, J.A. Lewis, Printed origami structures. Adv. Mater. 22, 2251–2254 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    M.A. Skylar-Scott, S. Gunasekaran, J.A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl. Acad. Sci. USA 113, 6137–6142 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    V.S. Ban, B.E. Knox, Mass-spectrometric study of the laser-induced vaporization of compounds of bismuth with the elements of group VIa. J. Chem. Phys. 52, 243–247 (1970).

    CAS  Article  Google Scholar 

  28. 28.

    T. Caillat, M. Carle, D. Perrin, H. Scherrer, S. Scherrer, Study of the Bi-Sb-Te ternary phase diagram. J. Phys. Chem. Solids. 53, 227–232 (1992).

    CAS  Article  Google Scholar 

  29. 29.

    N Miyashita, T Yano, R Tsukuda, I Yashima (2003) Effect of excess Te on microstructure and thermoelectric properties of p-type Bi040Sb160Te300+x (000<x<040) materials prepared by hot pressing method. J. Ceram. Soc. Jpn. 111: 386–390. doi:

  30. 30.

    V.B. Chernogorenko, K.A. Lynchak, Production of bismuth powder by the reduction of bismuth oxide with a mixture of molecular and atomic hydrogen. Sov. Powder Metall. Met. Ceram. 12, 360–362 (1973).

    Article  Google Scholar 

Download references


CK received funding from the Swiss National Science Foundation under grant No. 172180. NRG was supported by a NASA Space Technology Research Fellowship (NSTRF17). Filament fabrication was funded by DARPA SEED HR00111710005. The authors gratefully acknowledge Profs. R.N. Shah and J.G. Snyder for useful discussions. This work made use of NUANCE, IMSERC, and MatCI, which have received support from the SHyNE Resource (NSF ECCS-1542205) and the MRSEC program (NSF DMR-1720139).

Author information



Corresponding author

Correspondence to David C. Dunand.

Ethics declarations

Conflict of interest

DCD discloses a financial interest in Metalprinting, Inc. (South Korea) which is active in ink-based materials printing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12851 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kenel, C., Geisendorfer, N.R., Peng, J. et al. Bi2Te3 filaments via extrusion and pressureless sintering of Bi2Te3-based inks. MRS Communications (2021).

Download citation


  • Sintering
  • Thermoelectric
  • Extrusion
  • Coating
  • Oxide