Abstract
We investigate the single-molecule detection of anodic corrosion redox reactions of iron using two fluorophores, FeRhoNox-1 and FluoZin-3, which “turn-on” upon reacting with Fe2+. Both dye molecules show potential as fluorogenic sensors for detecting anodic corrosion of iron in an aqueous environment, but FeRhoNox-1 shows a larger change in fluorescence signal than FluoZin-3. Deviations from the ensemble observations of iron corrosion are observed when performing single-molecule counting analysis of the collected images of FeRhoNox-1 “turning-on” over time. A complete picture of the corrosion initiation at the molecular scale can be obtained by combining the Fe2+-sensitive detection with cathodic corrosion reaction detection.
Graphic abstract

This is a preview of subscription content, access via your institution.




Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
Det Norske Veritas group, Assessment of global cost of corrosion APPENDIX A assessment of global cost of corrosion. NACE. (2015). http://impact.nace.org/documents/appendix-a.pdf. Accessed 7 July 2021
H. Böhni, T. Suter, A. Schreyer, Micro- and nanotechniques to study localized corrosion. Electrochim. Acta. 40, 1361–1368 (1995). https://doi.org/10.1016/0013-4686(95)00072-M
K.H. Anantha, C. Örnek, S. Ejnermark, A. Medvedeva, J. Sjöström, J. Pan, In situ AFM study of localized corrosion processes of tempered AISI 420 martensitic stainless steel: effect of secondary hardening. J. Electrochem. Soc. 164, C810–C818 (2017). https://doi.org/10.1149/2.1261713jes
D. Sebastian, C.-W. Yao, I. Lian, Multiscale corrosion analysis of superhydrophobic coating on 2024 aluminum alloy in a 3.5 wt% NaCl solution. MRS Commun. 10, 305–311 (2020). https://doi.org/10.1557/MRC.2020.24
D. Sebastian, C.-W. Yao, Simultaneous mapping of nanoscale topography and surface potential for the study of localized corrosion in 2024–T3 aluminum alloy and corrosion resistance introduced by a superhydrophobic coating. MRS Commun. 11(1), 70–77 (2021). https://doi.org/10.1557/S43579-021-00015-1
H. Masuda, Nanoscopic analysis of aqueous corrosion by scanning tunneling microscopy. Corrosion 52, 435–439 (1996). https://doi.org/10.5006/1.3292131
C. de Alwis, K.A. Perrine, In situ PM-IRRAS at the air/electrolyte/solid interface reveals oxidation of iron to distinct minerals. J. Phys. Chem. A 124, 6735–6744 (2020). https://doi.org/10.1021/acs.jpca.0c03592
A. Augustyniak, J. Tsavalas, W. Ming, Early detection of steel corrosion via “turn-on” fluorescence in smart epoxy coatings. ACS Appl. Mater. Interfaces 1, 2618–2623 (2009). https://doi.org/10.1021/am900527s
X. Liu, H. Spikes, J.S.S. Wong, In situ pH responsive fluorescent probing of localized iron corrosion. Corros. Sci. 87, 118–126 (2014). https://doi.org/10.1016/j.corsci.2014.06.016
A. Saini, L. Kisley, Fluorescence microscopy of biophysical protein dynamics in nanoporous hydrogels. J. Appl. Phys. 126, 81101 (2019). https://doi.org/10.1063/1.5110299
W.E. Moerner, A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002). https://doi.org/10.1021/jp012992g
L. Kisley, Single molecule spectroscopy at interfaces. in: Spectrosc. Dyn. Single Mol. (Elsevier, Amsterdam, 2019), pp 117–161. https://doi.org/10.1016/b978-0-12-816463-1.00003-1.
J.B. Sambur, P. Chen, Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 65, 395–422 (2014). https://doi.org/10.1146/annurev-physchem-040513-103729
A. Rybina, M. Wirtz, D. Brox, R. Krämer, G. Jung, D.-P. Herten, Toward single-molecule catalysis. in Mol. Catal. (Wiley, Weinheim, 2014), pp. 53–80. https://doi.org/10.1002/9783527673278.ch3.
J.G. Smith, X. Zhang, P.K. Jain, Galvanic reactions at the single-nanoparticle level: tuning between mechanistic extremes. J. Mater. Chem. A 5, 11940–11948 (2017). https://doi.org/10.1039/C7TA03302H
A. Garcia, S.J. Saluga, D.J. Dibble, P.A. López, N. Saito, S.A. Blum, Does selectivity of molecular catalysts change with time? Polymerization imaged by single-molecule spectroscopy. Angew. Chem Int. Ed. 60, 1550–1555 (2021). https://doi.org/10.1002/anie.202010101
A. Saini, H. Messenger, L. Kisley, Fluorophores “turned-on” by corrosion reactions can be detected at the single-molecule level. ACS Appl. Mater. Interfaces 13, 2000–2006 (2021). https://doi.org/10.1021/acsami.0c18994
A. Augustyniak, W. Ming, Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings. Prog. Org. Coat. 71, 406–412 (2011). https://doi.org/10.1016/j.porgcoat.2011.04.013
M. Zhang, Y. Gao, M. Li, M. Yu, F. Li, L. Li, M. Zhu, J. Zhang, T. Yi, C. Huang, A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tetrahedron Lett. 48, 3709–3712 (2007). https://doi.org/10.1016/J.TETLET.2007.03.112
A. Augustyniak, In-Situ Early Detection of Metal Corrosion via “Turn-on” Fluorescence in “Smart” Epoxy Coatings (University of New Hampshire, Durham, New Hampshire, 2011)
T. Hirayama, K. Okuda, H. Nagasawa, A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem. Sci. 4, 1250–1256 (2013). https://doi.org/10.1039/C2SC21649C
J. Zhao, B.A. Bertoglio, M.J. Devinney, K.E. Dineley, A.R. Kay, The interaction of biological and noxious transition metals with the zinc probes FluoZin-3 and Newport Green. Anal. Biochem. 384, 34–41 (2009). https://doi.org/10.1016/J.AB.2008.09.019
I. Marszałek, A. Krȩzel, W. Goch, I. Zhukov, I. Paczkowska, W. Bal, Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. J. Inorg. Biochem. 161, 107–114 (2016). https://doi.org/10.1016/J.JINORGBIO.2016.05.009
T. Mukaide, Y. Hattori, N. Misawa, S. Funahashi, L. Jiang, T. Hirayama, H. Nagasawa, S. Toyokuni, Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model. Free Radic. Res. 48, 990–995 (2014). https://doi.org/10.3109/10715762.2014.898844
K.R. Gee, Z.-L. Zhou, W.-J. Qian, R. Kennedy, Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 124, 776–778 (2002). https://doi.org/10.1021/JA011774Y
J. Schuster, J. Brabandt, C. von Borczyskowski, Discrimination of photoblinking and photobleaching on the single molecule level. J. Lumin. 127, 224–229 (2007). https://doi.org/10.1016/J.JLUMIN.2007.02.028
P. Chen, X. Zhou, H. Shen, N.M. Andoy, E. Choudhary, K.-S. Han, G. Liu, W. Meng, Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560 (2010). https://doi.org/10.1039/b909052p
C.R. Daniels, C. Reznik, C.F. Landes, Dye diffusion at surfaces: charge matters. Langmuir 26, 4807–4812 (2010). https://doi.org/10.1021/LA904749Z
J. Chen, A. Bremauntz, L. Kisley, B. Shuang, C.F. Landes, Super-resolution mbPAINT for optical localization of single-stranded DNA. ACS Appl. Mater. Interfaces 5, 9338–9343 (2013). https://doi.org/10.1021/am403984k
Kisley Research Group @ CWRU, Super-resolution imaging and single molecule kinetics MATLAB analysis, (n.d.). https://github.com/KisleyLabAtCWRU/SuperResKinetics. Accessed 7 July 2021
Acknowledgments
The authors would like to thank the laboratory of Prof. Strangi at the Case Western Reserve University for use of their fluorimeter. The authors thank the Case Western Reserve University College of Arts and Sciences for financial support and members of the Kisley Research Group for helpful discussion.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there are no known conflicts of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Saini, A., Gatland, Z., Begley, J. et al. Investigation of fluorophores for single-molecule detection of anodic corrosion redox reactions. MRS Communications 11, 804–810 (2021). https://doi.org/10.1557/s43579-021-00096-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43579-021-00096-y